Skip to main content
Log in

Solution of the radiative-transfer equations with an azimuth-averaged Hanle phase matrix

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

The system of radiative-transfer equations for polarized radiation is solved analytically using an azimuth-averaged Hanle phase matrix. A Milne-Eddington model with a constant ratio of the line and continuum absorption coefficients and a linear dependence of the source function on optical depth is adopted for the atmosphere. The vector magnetic field is taken to be constant with optical depth. The dependence of the linear polarization obtained during observations at the solar limb on the magnitude and inclination of the magnetic field to the normal of the atmosphere is presented as an illustration of the theoretical computations. The measured polarization corresponds to two magnetic-field values and several possible field inclinations. The measured polarization is directly proportional to the quantum coefficient W 2 determining the resonance polarization in lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Landi degl’Innocenti and E. Landi degl’Innocenti, Astron. Astrophys. 192, 374 (1988).

    ADS  Google Scholar 

  2. D. N. Rachkovskii, Astron. Zh. 82, 734 (2005) [Astron. Rep. 49, 654 (2005)].

    Google Scholar 

  3. D. N. Rachkovskii, Astron. Zh. 86, 1 (2009) [Astron. Rep. 53, 153 (2009)].

    Google Scholar 

  4. D. N. Rachkovskii, Astron. Zh. 82, 830 (2005) [Astron. Rep. 49, 739 (2005)].

    Google Scholar 

  5. D. N. Rachkovskii, Izv. Krymsk. Astrofiz. Observ. 67,79 (1983).

    ADS  Google Scholar 

  6. D. N. Rachkovskii, Izv. Krymsk. Astrofiz. Observ. 87,11 (1993).

    Google Scholar 

  7. S. Chandrasekhar, Radiative Transfer (Dover, New York, 1960; Inostr. Liter., 1953).

    Google Scholar 

  8. I. W. Busbridge, Mon. Not. R. Astron. Soc. 113, 52 (1953).

    MathSciNet  ADS  Google Scholar 

  9. D.N. Rachkovskii, Izv. Krymsk. Astrofiz. Observ. 29,97 (1963).

    Google Scholar 

  10. A. Omont, E.W. Smith, and J. Cooper, Astrophys. J. 175, 185 (1972).

    Article  ADS  Google Scholar 

  11. A. Omont, E.W. Smith, and J. Cooper, Astrophys. J. 182, 283 (1973).

    Article  ADS  Google Scholar 

  12. J. O. Stenflo, Solar Phys. 80, 209 (1982).

    Article  ADS  Google Scholar 

  13. J. O. Stenflo, Astron. Astrophys. 338, 301 (1998).

    ADS  Google Scholar 

  14. J. O. Stenflo, Solar Magnetic Fields-Polarized Radiation Diagnostic (Kluber, Dordrecht, 1994).

    Google Scholar 

  15. L. L. House, J. Quant. Spectrosc. Radiat. Transfer 10,1171 (1970).

    Article  ADS  Google Scholar 

  16. L. L. House, J. Quant. Spectrosc. Radiat. Transfer 11,367 (1971).

    Article  ADS  Google Scholar 

  17. D. N. Rachkovskii, Astron. Zh. 82, 1 (2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © D.N. Rachkovskii, 2010, published in Astronomicheskiĭ Zhurnal, 2010, Vol. 87, No. 9, pp. 905–912.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rachkovskii, D.N. Solution of the radiative-transfer equations with an azimuth-averaged Hanle phase matrix. Astron. Rep. 54, 832–839 (2010). https://doi.org/10.1134/S1063772910090076

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772910090076

Keywords

Navigation