Skip to main content
Log in

Close binaries containing Supermassive Black Holes

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

We consider the evolution of binary systems formed by a Supermassive Black Hole (SMBH) residing in the center of a galaxy or a globular cluster and a star in its immediate vicinity. The star is assumed to fill its Roche lobe, and the SMBH accretes primarily the matter of this star. The evolution of such a system is mainly determined by the same processes as for an ordinary binary. The main differences are that the donor star is irradiated by hard radiation emitted during accretion onto the SMBH; in a detached system, nearly all the donor wind is captured by the black hole, which strongly affects the evolution of the semi-major axis; it is not possible for companions of the most massive SMBHs to fill their Roche lobes, since the corresponding orbital separations are smaller than the radius of the last stable orbit in the gravitational field of the SMBH. Moreover, there may not be efficient exchange between the orbital angular momentum and the angular momentum of the overflowing matter in such systems. Our computations assumed that, if the characteristic timescale for mass transfer is smaller than the thermal timescale of the star, no momentum exchange occurs. Absorption of incident external radiation in the stellar envelope was treated using the same formalism that was used when computing the radiative transfer in the stellar atmosphere. Numerical simulations show that Roche-lobe overflow is possible for a broad range of initial system parameters. The evolution of semi-detached systems containing a star and a SMBH nearly always ends with the dynamical disruption of the star. Stars with masses close to the solar mass are destroyed immediately after they fill their Roche lobes. During the accretion of matter of disrupted stars, the SMBH can achieve quasar luminosities. If the SMBH accretes ambient gas as well as gas stripped from stars, the star is subject to additional radiation in the detached phase of its evolution, strengthening its stellar wind. This leads to an increase of the semi-major axis and subsequent decrease of the probability of Roche-lobe overflow during the subsequent evolution of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Chao, W. Bian, and K. Huang, Adv. SpaceRes. 42, 544 (2008).

    Article  ADS  Google Scholar 

  2. Y. Wang, T. Yamada, and Y. Taniguchi, Astrophys. J. 588, 113 (2003).

    Article  ADS  Google Scholar 

  3. C. L. Steinhardt and M. Elvis, arXiv:0911.1355 [astro-ph] (2009).

  4. Y. Shen, Astrophys. J. 704, 89 (2009).

    Article  ADS  Google Scholar 

  5. K. Coppin, A. Swinbank, R. Neri, et al., Mon. Not. R. Astron. Soc. 389, 45 (2008).

    Article  ADS  Google Scholar 

  6. A. E. Broderick and R. Narayan, Astrophys. J. 638, L21 (2006).

    Article  ADS  Google Scholar 

  7. G. Ghisellini, L. Foschini, M. Volonteri, et al., Mon. Not. R. Astron. Soc. 399, L24 (2009).

    Article  ADS  Google Scholar 

  8. P. Amaro-Seoane and M. Freitag, Astrophys. J. 653, 53 (2006).

    Article  ADS  Google Scholar 

  9. S. Umbreit, J. M. Fregeau, and F. A. Rasio, arXiv:0910.5293 [astro-ph] (2009).

  10. M. Mapelli, Mon. Not. R. Astron. Soc. 376, 131 (2007).

    Article  ADS  Google Scholar 

  11. P. Hopkins, R. Somerville, L. Hernquist, et al., Astrophys. J. 652, 864 (2006).

    Article  ADS  Google Scholar 

  12. W. Oegerle and J. Hill, Astron. J. 122, 2858 (2001).

    Article  ADS  Google Scholar 

  13. D. Mortlock, M. Patel, S. Warren, et al., Astron. Astrophys. 505, 97 (2009).

    Article  ADS  Google Scholar 

  14. A. Venkatesan, R. Schneider, and A. Ferrara, Mon. Not. R. Astron. Soc. 349, L43 (2004).

    Article  ADS  Google Scholar 

  15. M. Wardle and F. Yusef-Zadeh, arXiv: 0805.3274 [astro-ph] (2008).

  16. D. Figer, arXiv: 0803.1619 [astro-ph] (2008).

  17. L. Young, G. Bendo, and D. Lucero, arXiv: 0803.4510 [astro-ph] (2008).

  18. T. Boker, J. Falcon-Barroso, E. Schinnerer, et al., arXiv: 0710.4036 [astro-ph] (2007).

  19. A. V. Tutukov and A.V. Fedorova, Astron. Zh. 86, 449 (2009) [Astron. Rep. 53, 410 (2009)].

    Google Scholar 

  20. L. E. Strubbe and E. Quataert, arXiv: 0905.3735 [astro-ph] (2009).

  21. J. Magorrian and S. Tremaine, Mon. Not. R. Astron. Soc. 309, 447 (1999).

    Article  ADS  Google Scholar 

  22. A. G. Masevich and A. V. Tutukov, Stellar Evolution: Theory and Observations (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  23. B. Paczynski, Ann. Rev. Astron. Astrophys. 9, 183 (1971).

    Article  ADS  Google Scholar 

  24. O. Vilhu, E. Ergma, and A. Fedorova, Astron. Astrophys. 291, 842 (1994).

    ADS  Google Scholar 

  25. A. V. Tutukov, A. V. Fedorova, E. V. Ergma, and L. R. Yungel’son, Pis’ma Astron. Zh. 11, 123 (1985) [Sov. Astron. Lett. 11, 52 (1985)].

    ADS  Google Scholar 

  26. A. V. Tutukov, A. V. Fedorova, E. V. Ergma, and L. R. Yungel’son, Astrofizika 24, 85 (1986).

    ADS  Google Scholar 

  27. A. V. Fedorova and E. V. Ergma, Astrophys. Space Sci. 151, 125 (1989).

    Article  ADS  Google Scholar 

  28. A. V. Tutukov and A. V. Fedorova, Astron. Zh. 66, 1172 (1989) [Sov. Astron. 33, 606 (1989)].

    ADS  Google Scholar 

  29. A. V. Tutukov and A.V. Fedorova, Astron. Zh. 79, 847 (2002) [Astron. Rep. 46, 765 (2002)].

    Google Scholar 

  30. A. R. King, in Black Holes in Binaries and Galactic, Ed. by L. Kaper, E. P. J. van den Heuvel, and P. A. Woudt (Springer, Berlin, 2001), p. 155.

    Chapter  Google Scholar 

  31. L. D. Landau and E. M. Lifshits, Course of Theoretical Physics, Vol. 2: The Classical Theory of Fields (Nauka, Moscow, 1988; Pergamon, Oxford, 1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.V. Tutukov, A.V. Fedorova, 2010, published in Astronomicheskiĭ Zhurnal, 2010, Vol. 87, No. 9, pp. 878–894.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tutukov, A.V., Fedorova, A.V. Close binaries containing Supermassive Black Holes. Astron. Rep. 54, 808–822 (2010). https://doi.org/10.1134/S1063772910090052

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772910090052

Keywords

Navigation