Skip to main content
Log in

The dynamical evolution of galaxy clusters taking into account the deceleration of disk galaxies by the gaseous component of the cluster

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

Numerical simulations of the dynamical evolution of a galaxy cluster in the framework of the N-body problem taking into account dark matter are presented. These simulations are aimed at studying the role of intergalactic gas in the cluster (the ICM) in the formation of a central, supermassive cD galaxy. The numerical models indicate that deceleration of the galaxies by intergalactic gas supports the observed high temperature of this gas, and accelerates the formation of a supermassive cD galaxy in the cluster core. The accretion of interstellar gas by the cluster core can support a high accretion rate by the central, supermassive black hole associated with the nucleus of the cD galaxy. As a result, this nucleus harbors a bright quasar. The mass of the black hole can grow with time to values 1010 M , as are observed for the brightest quasars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Shankar, arXiv:0907.5213 [astro-ph] (2009).

  2. L. Guzzo, in Where’s the Matter? Tracing Dark and Bright Matter with the New Generation of Large Scale Surveys, Ed. by M. Treyer and L. Tresse (Frontier Group, 2002); arXiv:astro-ph/0111309 (2001).

  3. A. V. Tutukov and A.V. Fedorova, Astron. Zh. 83, 880 (2006) [Astron. Rep. 50, 785 (2006)].

    Google Scholar 

  4. S. Giodini, D. Pierini, A. Finoguenov, et al., arXiv:0904.0448 [astro-ph] (2009).

  5. T. F. Lagana, G. Lima Neto, F. Andrade-Santos, et al., Astron. Astrophys. 485, 633 (2008); arXiv:0804.1102 [astro-ph] (2008).

    Article  ADS  Google Scholar 

  6. M. Takizawa, Astrophys. J. 629, 791 (2005).

    Article  ADS  Google Scholar 

  7. E. Roediger and M. Brueggen, Mon. Not. R. Astron. Soc. 380, 1399 (2007).

    Article  ADS  Google Scholar 

  8. A. Sanderson, T. Ponman, and E. O’sullivan, Mon. Not. R. Astron. Soc. 372, 1496 (2006).

    Article  ADS  Google Scholar 

  9. M. Ricotti, N. Gnedin, and J. Shull, Astrophys. J. 575, 9 (2002).

    Article  ADS  Google Scholar 

  10. C. Danforth and J. Shull, Astrophys. J. 624, 555 (2005).

    Article  ADS  Google Scholar 

  11. J. Stocke, J. Shull, and S. Penston, in Planets to Cosmology. Essential Science in the Final Years of the Hubble Space Telescope, STSI Symp. Ser. No. 18, Ed. by M. Livio and S. Casertano (Space Telescope Sci. Inst., Baltimore, 2006), p. 111.

    Chapter  Google Scholar 

  12. J. Stocke, C. Danforth, and J. Shull, Astrophys. J. 671, 136 (2007); arXiv:0708.4362 [astro-ph] (2007).

    Article  ADS  Google Scholar 

  13. B. Aracil, T. Tripp, D. Bowen, et al.,Mon. Not. R. Astron. Soc. 367, 139 (2006); arXiv:0512163 [astro-ph] (2005).

    Article  ADS  Google Scholar 

  14. A. Tutukov, Astron. Zh. 83, 496 (2006) [Astron. Rep. 50, 439 (2006)].

    Google Scholar 

  15. A. Quillen, I. Minchev, J. Bland-Hawthorn, et al., arXiv:0903.1851 [astro-ph] (2009).

  16. E. Gawiser, arXiv:0904.3798 [astro-ph] (2009).

  17. C. Clarke and D. Gittins, Mon. Not. R. Astron. Soc. 371, 530 (2006).

    Article  ADS  Google Scholar 

  18. F. Pelupessy, P. van der Werf, and V. Icke, Astron. Astrophys. 422, 55 (2004).

    Article  ADS  Google Scholar 

  19. A. Georgakakis, A. Coil, E. Laird, et al., arXiv:0904.3747 [astro-ph] (2009).

  20. J. Knappen and P. James, arXiv:0904.4263 [astro-ph] (2009).

  21. S. Petty, D. de Mello, J. Gallaphev, et al., arXiv:0904.4433 [astro-ph] (2009).

  22. M. Peeples, R. Pogge, and K. Stanen, Astrophys. J. 695, 259 (2009).

    Article  ADS  Google Scholar 

  23. S. Ellison, L. Simard, N. Cowan, et al., arXiv:0903.4684 [astro-ph] (2009).

  24. M.-R. Cioni, arXiv:0904.3136 [astro-ph] (2009).

  25. L. Armus, J. Mazzarella, A. Evans, et al., arXiv:0904.4498 [astro-ph] (2009).

  26. R. Koopmann, R. Giovanelli, M. Haynes, et al., arXiv:0909.2609 [astro-ph] (2009).

  27. R. Bussmann, A. Dey, G. Borys, et al., arXiv:0909.2650 [astro-ph] (2009).

  28. R. Kraan-Korteweg, M. Cluver, T. Jarret, et al., arXiv:0909.2803 [astro-ph] (2009).

  29. B. Vollmer, M. Soida, A. Chung, et al., arXiv:0901.2770 [astro-ph] (2009).

  30. B. Poggianti, A. Aragon-Salamanca, S. Bamford, et al., Messenger No. 136, 54 (2009).

  31. R. Bower, arXiv:0909.2116 [astro-ph] (2009).

  32. A. Fontana, I. Donnarumma, E. Vanzella, et al., Astrophys. J. 594, L9 (2003).

    Article  ADS  Google Scholar 

  33. A. Dekel, R. Sari, D. Ceverino, et al., arXiv:0901.2458 [astro-ph] (2009).

  34. A. Garijo, E. Athanassoula, and C. Garcia-Gomez, Astron. Astrophys. 327, 930 (1997).

    ADS  Google Scholar 

  35. C. Lopez-Sanjuan, M. Balcells, C. Garcia-Dabo, M. Prieto, et al., arXiv:0901.0189 [astro-ph] (2009).

  36. L. Ferrarese and D. Merritt, Astrophys. J. 539, L9 (2000).

    Article  ADS  Google Scholar 

  37. A. Alshino, H. Khosroshahi, T. Ponman, et al., arXiv:0909.3810 [astro-ph] (2009).

  38. A. Mantz, S. Allen, H. Ebelins, et al., arXiv:0909.3099 [astro-ph] (2009).

  39. D. Christlein, E. Gawiser, D. Marchesini, et al., arXiv:0909.1940 [astro-ph] (2009).

  40. R. Sutherland and M. Dopita, Astrophys. J. Suppl. Ser. 88, 253 (1993).

    Article  ADS  Google Scholar 

  41. P. Salome and F. Combes, Astron. Astrophys. 412, 657 (2003).

    Article  ADS  Google Scholar 

  42. A. Cattaneo and R. Teyssier, Mon. Not. R. Astron. Soc. 376, 1547 (2007).

    Article  ADS  Google Scholar 

  43. E. Roediger, M. Brueggen, A. Simionescu, et al., arXiv:0909.2660 [astro-ph] (2009).

  44. E. Puchwein, D. Sijacki, V. Springel, et al., arXiv:0909.3000 [astro-ph] (2009).

  45. A. Renzini, in Proc. of the Carnegie Observatories Astrophysics Symp. on Clusters of Galaxies; Probes of Cosmological Structure and Galaxy, vol. 3, Ed. by J. S. Mulchaey, A. Dressler, and A. Oemler (Cambridge Univ., Cambridge, 2004), p. 260; arXiv:astro-ph/0307146 (2003).

    Google Scholar 

  46. J. Stocke, Ch. Danforth, M. Shull, et al., Astrophys. J. 671, 146 (2007).

    Article  ADS  Google Scholar 

  47. M. Fukugita, C. Hogan, and P. Peebles, Astrophys. J. 503, 518 (1998).

    Article  ADS  Google Scholar 

  48. S. De Grandi and S. Molendi, arXiv:0909.1224 [astro-ph] (2009).

  49. J. Aguerri, M. Huertas-Comany, and L. Tresse, arXiv:0909.3383 [astro-ph] (2009).

  50. Z. Wen, J. Han, and F. Lin, arXiv:0909.3365 [astroph] (2009).

  51. C. Kirkpatrick, M. Gitti, K. Cavagnolo, et al., arXiv:0909.2252 [astro-ph] (2009).

  52. N. Castro-Rodriguez, M. Arnaboldi, J. Aguerri, et al., arXiv:0908.3848 [astro-ph] (2009).

  53. M. Arnaboldi, in Recicling Intergalactic and Interstellar Matter, IAU Symp. 217, 54 (2004); arXiv:0310.143 [astro-ph] (2003).

    ADS  Google Scholar 

  54. J. Fedmeier, R. Ciardullo, G. Jacoby, et al., in Recicling Intergalactic and Interstellar Matter, IAU Symp. 217, 64 (2004).

    ADS  Google Scholar 

  55. E. Roediger, arXiv:0909.2638 [astro-ph] (2009).

  56. S. Tonneseu and G. Bryan, arXiv:0909.3097 [astroph] (2009).

  57. J. Feldmeier, in Recicling Intergalactic and Interstellar Matter, IAU Symp. 217, 86 (2004); astroph/0310.884 [astro-ph](2003).

    ADS  Google Scholar 

  58. J. Blakeslee, T. Franx, and M. Postman, Astrophys. J. 596, 143 (2003).

    Article  ADS  Google Scholar 

  59. M. Jalali and A. Rafiee, Mon. Not. R. Astron. Soc. 320, 379 (2001).

    Article  ADS  Google Scholar 

  60. M. Segar, Mon.Not. R. Astron. Soc. 344, 110 (2003).

    Article  ADS  Google Scholar 

  61. M. Bureau and A. Chung, Mon. Not. R. Astron. Soc. 366, 182 (2006).

    ADS  Google Scholar 

  62. A. Subramaniam and T. Prabhu, Bull. Astron. Soc. India 33, 406 (2005).

    ADS  Google Scholar 

  63. P. Yoachim and J. Dalcanton, Astron. J. 131, 226 (2006).

    Article  ADS  Google Scholar 

  64. G. Miller and J. Scalo, Astrophys. J. Suppl. Ser. 41, 513 (1979).

    Article  ADS  Google Scholar 

  65. J. Gallagher, D. Hunter, and A. Tutukov, Astrophys. J. 284, 544 (1984).

    Article  ADS  Google Scholar 

  66. G.M. Voit, Rev. Mod. Phys. 77, 207 (2005); astroph/0410173 (2004).

    Article  ADS  Google Scholar 

  67. E. Pointecontean, M. Arnaud, and G. Pratt, Astron. Astrophys. 435, 1 (2005); astro-ph/0501635 (2005).

    Article  ADS  Google Scholar 

  68. A. Falterbacher, A. Kravtsov, D. Nagai, et al., Mon. Not. R. Astron. Soc. 358, 139 (2005).

    Article  ADS  Google Scholar 

  69. I. Karachentsev, V. Karachentseva, W. Huchtmeier, et al., Astron. J. 127, 2031 (2004).

    Article  ADS  Google Scholar 

  70. L. Verlet and J. J. Weis, Phys. Rev. A 5, 939 (1972).

    Article  ADS  Google Scholar 

  71. A. V. Tutukov, V. V. Dryomov, and G. N. Dryomova, Astron. Zh. 84, 487 (2007) [Astron. Rep. 51, 435 (2007)].

    Google Scholar 

  72. A. V. Tutukov, V. V. Dryomov, and G. N. Dryomova, Astron. Zh. 86, 955 (2009) [Astron. Rep. 53, 886 (2009)].

    Google Scholar 

  73. G. Dryomova, V. Dryomov, and A. Tutukov, in Proc. of the Gamow Memorial Intern. Conf. on Astrophysics and Cosmology after Gamow, Odessa, Ukraine, 17–23 Aug. 2009, Ed. by S. K. Chakrabarti, A. I. Zhuk, and G. S. Bisnovatyi-Kogan, AIP Conf. Proc. 1206, 390 (2009).

  74. A. Mercurio, P. Merluzzi, C. P. Haines, et al., Mon. Not. R. Astron. Soc. 368, 109 (2006).

    ADS  Google Scholar 

  75. S. Miyoshi, M. Yoshimura, and N. Tanaka, Acta Human. Sci. Univ. Sangio Kyotiensis, Natural Sci. Ser. 37, 45 (2008).

    Google Scholar 

  76. I.R. King, Quart. J. R. Astron.Soc. 22, 227 (1981).

    ADS  Google Scholar 

  77. E. Roediger, M. Brueggen, and M. Hoeft, Mon. Not. R. Astron. Soc. 371, 609 (2006).

    Article  ADS  Google Scholar 

  78. P. Bode, J. P. Ostriker, and A. Vikhlinin, Astrophys. J. 700, 989 (2009).

    Article  ADS  Google Scholar 

  79. E. Roediger and G. Hensler, Astron. Astrophys. 483, 121 (2008).

    Article  ADS  Google Scholar 

  80. J. A. ZuHone, M. Markevitch, and R. E. Johnson, arXiv:0912.0237v1 [astro-ph] (2009).

  81. M. Roos, arXiv:1001.0316v1 [astro-ph.CO] (2010).

  82. E. L. Lokas and G. Mamon, Mon. Not. R. Astron. Soc. 343, 401 (2003).

    Article  ADS  Google Scholar 

  83. M. Sereno, M. Lubini, and Ph. Jetzer, arXiv:0904.0018 [astro-ph.CO] (2009).

  84. S. S. McGaugh and W. J. G. de Blok, Astrophys. J. 481, 689 (1997); arXiv:astro-ph/9612070 (1996).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © G.N. Dremova, A.V. Tutukov, V.V. Dremov, 2010, published in Astronomicheskiĭ Zhurnal, 2010, Vol. 87, No. 8, pp. 768–783.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dremova, G.N., Tutukov, A.V. & Dremov, V.V. The dynamical evolution of galaxy clusters taking into account the deceleration of disk galaxies by the gaseous component of the cluster. Astron. Rep. 54, 704–718 (2010). https://doi.org/10.1134/S1063772910080032

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772910080032

Keywords

Navigation