Skip to main content
Log in

Non-radial coronal streamers in the course of the solar cycle

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

Equatorward deviations of coronal streamers at solar minima and poleward deviations at solar maxima are interpreted as the effects of changes in the general topology of the global solar magnetic field. The streamer axis is located on the neutral surface of the radial magnetic field B r = 0, and the neutral surfaces deviate toward the field null points. The magnetic configuration with a null point (line) located at the equator is typical for the solar minima, while the null points are located on the rotational axis of the Sun at the solar maxima.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Koutchmy and M. Livshits, Space Sci. Revs. 61, 393 (1992).

    Article  ADS  Google Scholar 

  2. O. Engvold, in Dynamics and Structure of Quiescent Prominences, Ed. by E. R. Priest (Reidel, Dordrecht, 1989), p. 47.

    Google Scholar 

  3. K. Saito and E. Tandberg-Hanssen, Solar Phys. 31, 105 (1973).

    Article  ADS  Google Scholar 

  4. B. C. Low, Solar Phys. 167, 217 (1996).

    Article  ADS  Google Scholar 

  5. G. E. Brueckner, R. A. Howard, M. J. Koomen, et al., Solar Phys. 162, 357 (1995).

    Article  ADS  Google Scholar 

  6. A. Ajabshirizadeh and B. Filippov, Solar Phys. 221, 283 (2004).

    Article  ADS  Google Scholar 

  7. B. P. Filippov, in Multiwaves Solar Investigations and Modern Problems of Solar Activity, Proc. of the All-Russ. Conf. (SAO RAN, St. Petersburg, 2007), p. 80.

    Google Scholar 

  8. V. I. Makarov, Solar Phys. 150, 359 (1994).

    Article  ADS  Google Scholar 

  9. D. M. Rust, J. Geophys. Res. 106, 25075 (2001).

    Article  ADS  Google Scholar 

  10. V. I. Makarov and B. P. Filippov, Solar Phys. 214, 55 (2003).

    Article  ADS  Google Scholar 

  11. V. G. Eselevich and M. V. Eselevich, Solar Phys. 208, 5 (2002).

    Article  ADS  Google Scholar 

  12. Kim Gun-Der, V. I. Makarov, and A.G. Tlatov, Intern. J. Geomagn. Aeron. 5(2), CiteID GI2011 (2004).

  13. P. A. Gilman, Solar Phys. 192, 27 (2000).

    Article  ADS  Google Scholar 

  14. E. N. Parker, Astrophys. J. 121, 491 (1955).

    Article  ADS  Google Scholar 

  15. D. V. Huse, Advances in Solar System Magnetohydrodynamics,, Ed. by E. Priest and A. Hood (Cambridge Univ., Cambridge, 1991; Mir, Moscow, 1995), p. 82.

    Google Scholar 

  16. K. H. Schatten, J. M. Wilcox, and N. F. Ness, Solar Phys. 6, 442 (1969).

    Article  ADS  Google Scholar 

  17. M. D. Altschuler and G. Newkirk, Solar Phys. 9, 131 (1969).

    Article  ADS  Google Scholar 

  18. J. Adams and G. W. Pneuman, Solar Phys. 46, 185 (1976).

    Article  ADS  Google Scholar 

  19. M. D. Altschuler, R. H. Levine, M. Stix, and J.W. Harvey, Solar Phys. 51, 345 (1977).

    Article  ADS  Google Scholar 

  20. R. H. Levine, M. Schulz, and E. N. Frazier, Solar Phys. 77, 363 (1982).

    Article  ADS  Google Scholar 

  21. J. T. Hoeksema and P. H. Scherrer, The Solar Magnetic Field—1976 through 1985, World Data Center A for Solar-Terrestrial Physics, Report UAG-94 (NGDC, Boulder, 1986).

    Google Scholar 

  22. S. Chapman and J. Bartels, Geomagnetism (Oxford Univ., London, 1940).

    Google Scholar 

  23. S. Bravo, G. A. Stewart, and X. Blanco-Cano, Solar Phys. 179, 223 (1998).

    Article  ADS  Google Scholar 

  24. D.V. Klepikov, B. P. Filippov, A. Adzhabshirizade, and Yu. V. Platov, Astron. Zh. 83, 932 (2006) [Astron. Rep. 50, 834 (2006)].

    Google Scholar 

  25. Y.-M. Wang, Astrophys. J. 456, L119 (1996).

    Article  ADS  Google Scholar 

  26. M. M. Molodenskii, L. I. Starkova, S. Koutchmy, and A.V. Ershov, Astron. Zh. 73, 934 (1996) [Astron. Rep. 40, 848 (1996)].

    Google Scholar 

  27. Y.-M. Wang, N. R. Sheeley, Jr., R. A. Howard, et al., Astrophys. J. 485, 875 (1997).

    Article  ADS  Google Scholar 

  28. S. Koutchmy, V. L. Merzlyakov, and M.M. Molodenskii, Astron. Zh. 78, 953 (2001) [Astron. Rep. 45, 834 (2001)].

    Google Scholar 

  29. R. A. Gulyaev, Solar Phys. 142, 213 (1992).

    Article  ADS  Google Scholar 

  30. J. Sykora, P. Ambroz, and O. G. Badalyan, Adv. Space Res. 14(4), 69 (1994).

    Article  ADS  Google Scholar 

  31. S. L. Koutchmy and M. M. Molodenskii, Pis’ma Astron. Zh. 31, 447 (2005) [Astron. Lett. 31, 398 (2005)].

    Google Scholar 

  32. S. Koutchmy and A. G. Nikogossian, Astron. Astrophys. 395, 983 (2002).

    Article  ADS  Google Scholar 

  33. B. P. Filippov, N. Gopalswamy, and A. V. Lozhechkin, Solar Phys. 203, 119 (2001).

    Article  ADS  Google Scholar 

  34. B. P. Filippov, N. Gopalsvami, and A. V. Lozhechkin, Astron. Zh. 79, 462 (2002) [Astron. Rep. 46, 417 (2002)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © B.P. Filippov, 2009, published in Astronomicheskiĭ Zhurnal, 2009, Vol. 86, No. 6, pp. 611–615.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filippov, B.P. Non-radial coronal streamers in the course of the solar cycle. Astron. Rep. 53, 564–568 (2009). https://doi.org/10.1134/S1063772909060092

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772909060092

PACS numbers

Navigation