Skip to main content
Log in

Horizontal magnetic fields in the solar photosphere

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

Two-dimensional simulations of time-dependent solar magnetogranulation are used to analyze the horizontal magnetic fields and the response of the synthesized Stokes profiles of the IR FeI λ1564.85 nm line to the magnetic fields. The 1.5-h series of MHD models used for the analyses reproduces a region of the magnetic network in the photosphere with an unsigned magnetic flux density of 192 G at the solar surface. According to the magnetic-field distribution obtained, the most probable absolute strength of the horizontal magnetic field at an optical depth of τ 5 = 1(τ 5 denotes τ at λ = 500 nm) is 50 G, while the mean value is 244 G. On average, the horizontal magnetic fields are stronger than the vertical fields to heights of about 400 km in the photosphere due to their higher density and the larger area they occupy. The maximum factor by which the horizontal fields are greater is 1.5. Strong horizontal magnetic flux tubes emerge at the surface as spots with field strengths of more than 500 G. These are smaller than granules in size, and have lifetimes of 3–6 min. They form in the photosphere due to the expulsion of magnetic fields by convective flows coming from deep subphotospheric layers. The data obtained qualitatively agree with observations with the Hinode space observatory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Kosugi, K. Matsuzaki, T. Sakao, et al., Solar Phys. 243, 3 (2007).

    Article  ADS  Google Scholar 

  2. B. Lites, H. Socas-Navarro, M. Kubo, et al., Publ. Astron. Soc. Japan 59, 571 (2007).

    ADS  Google Scholar 

  3. B. Lites, M. Kubo, H. Socas-Navarro, et al., Astrophys. J. 460, 1237 (2008).

    Article  ADS  Google Scholar 

  4. B. Lites, K. D. Leka, A. Skumanich, et al., Astrophys. J. 460, 1019 (1996).

    Article  ADS  Google Scholar 

  5. N. Meunier, S. K. Solanki, and W. C. Livingston, Astron. Astrophys. 331, 771 (1998).

    ADS  Google Scholar 

  6. B. Lites, A. Skumanich, and V. Martinez Pillet, Astron. Astrophys. 333, 1053 (1998).

    ADS  Google Scholar 

  7. B. De Pontieu, Astrophys. J. 569, 474 (2002).

    Article  ADS  Google Scholar 

  8. M. J. Martinez González, M. Collados, B. Ruiz Cobo, and S. K. Solanki, Astron. Astrophys. 469, L39 (2007).

    Article  ADS  Google Scholar 

  9. R. Centeno, H. Socas-Navarro, B. Lites, et al., Astrophys. J. 666, L137 (2007).

    Article  ADS  Google Scholar 

  10. D. Orozco Suárez, L. R. Bellot Rubio, J. C. del Toro Iniesta, et al., Astrophys. J. 670, L61 (2007).

    Article  ADS  Google Scholar 

  11. J. W. Harvey, D. Branston, C. J. Henney, and C. U. Keller, Astrophys. J. 659, L177 (2007).

    Article  ADS  Google Scholar 

  12. R. Ishikawa, S. Tsuneta, K. Ichimoto, et al., Astron. Astrophys. 481, L25 (2008).

    Article  ADS  Google Scholar 

  13. U. Grossmann-Doerth, M. Schüssler, and O. Steiner, Astron. Astrophys. 337, 928 (1998).

    ADS  Google Scholar 

  14. A. S. Gadun, V. A. Sheminova, and S. K. Solanki, Kinemat. Fiz. Nebesn. Tel 15(5), 387 (1999).

    ADS  Google Scholar 

  15. A. S. Gadun, S. K. Solanki, V. A. Sheminova, and S. R. O. Ploner, Solar Phys. 203, 1 (2001).

    Article  ADS  Google Scholar 

  16. W. Schaffenberger, S. Wedemeyer-Bohm, O. Steiner, and B. Freytag, in Solar MHD Theory and Observations, Ed. by J. Leibacher, R. E. Stein, and H. Uitenbroek, ASP Conf. Ser. 354, 345 (2006).

  17. O. Steiner, R. Rezaei, W. Schaffenberger, and S. Wedemeyer-Bohm, Astrophys. J. 680, L85 (2008).

    Article  ADS  Google Scholar 

  18. M. Schüssler and A. Vögler, Astron. Astrophys. 481, L5 (2008).

    Article  ADS  Google Scholar 

  19. O. Steiner, in Modern Solar Facilities-Advanced Solar Science, Ed. by F. Kneer, K. G. Puschmann, and A. D. Wittmann (Universitatsverlag, Göttingen, 2007).

    Google Scholar 

  20. M. Asplund, H.-G. Ludwig, Å. Nordlund, and R. F. Stein, Astron. Astrophys. 359, 669 (2000).

    ADS  Google Scholar 

  21. A. S. Gadun, S. K. Solanki, and A. Johannesson, Astron. Astrophys. 350, 1018 (1999).

    ADS  Google Scholar 

  22. S. R. O. Ploner, S. K. Solanki, and A. S. Gadun, Astron. Astrophys. 352, 679 (1999).

    ADS  Google Scholar 

  23. I. N. Atroshchenko and V. A. Sheminova, Kinemat. Fiz. Nebesn. Tel 12(4), 32 (1996).

    ADS  Google Scholar 

  24. A. S. Gadun, Kinemat. Fiz. Nebesn. Tel 16(2), 99 (2000).

    ADS  Google Scholar 

  25. V. A. Sheminova and A. S. Gadun, Astron. Zh. 77, 790 (2000) [Astron. Rep. 44, 701 (2000)].

    Google Scholar 

  26. W. Deinzer, G. Hensler, M. Schüssler, and E. Weisshaar, Astron. Astrophys. 139, 435 (1984).

    ADS  Google Scholar 

  27. P. N. Brandt and A. S. Gadun, Kinemat. Fiz. Nebesn. Tel 11(4), 44 (1995).

    ADS  Google Scholar 

  28. S. R. O. Ploner, M. Schüssler, S. K. Solanki, and A. S. Gadun, in Advanced Solar Polarimetry—Theory, Observation, and Instrumentation, Ed. by M. Sigwarth, ASP Conf. Ser. 236, 363 (2001).

  29. R. F. Stein and Å. Nordlund, in IAU Colloquim 188: Magnetic Coupling of the Solar Atmosphere, Ed. by H. Sawaya-Lacoste (ESA Publ. Division, 2002), p. 83.

  30. L. R. Bellot Rubio, R. Luis, I. Rodrígues Hidalgo, et al., Astron. Astrophys. 560, 1010 (2001).

    Google Scholar 

  31. S. R. O. Ploner, M. Schüssler, S. K. Solanki, et al., in Advanced Solar Polarimetry—Theory, Observation, and Instrumentation, Ed. by M. Sigwarth, ASP Conf. Ser. 236, 371 (2001).

  32. V. A. Sheminova, Kinemat. Fiz. Nebesn. Tel 21(3), 172 (2005) [Kinem. Phys. Celest. Bodies 21, 120 (2005)].

    ADS  Google Scholar 

  33. V. A. Sheminova, Solar Phys. 254, 29 (2009).

    Article  ADS  Google Scholar 

  34. A. Vögler, S. Shelyag, M. Schüssler, et al., Astron. Astrophys. 429, 335 (2005).

    Article  ADS  Google Scholar 

  35. R. F. Stein and Å. Nordlund, Astrophys. J. 642, 1246 (2006).

    Article  ADS  Google Scholar 

  36. B.W. Lites, Astrophys. J. 573, 431 (2002).

    Article  ADS  Google Scholar 

  37. J. Sánchez Almeida, Astron. Astrophys. 450, 1198 (2006).

    Article  Google Scholar 

  38. I. Domínguez Cerdeña, J. Almeida Sánchez, and F. Kneer, Astrophys. J. 407, 741 (2003).

    Google Scholar 

  39. P. S. Barklem, N. Piskunov, and B. J. O’Mara, Astron. Astrophys. Suppl. Ser. 142, 467 (2000).

    Article  ADS  Google Scholar 

  40. V. A. Sheminova, Calculating the Profiles of Stokes Parameters of Magnetoactive Absorption Lines in Stellar Atmospheres, Dep. VINITI May 30, 1990, No. 2940-V90 (Kiev, Ukraina, 1990) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.A. Sheminova, 2009, published in Astronomicheskiĭ Zhurnal, 2009, Vol. 86, No. 5, pp. 518–528.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheminova, V.A. Horizontal magnetic fields in the solar photosphere. Astron. Rep. 53, 477–486 (2009). https://doi.org/10.1134/S1063772909050126

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772909050126

PACS numbers

Navigation