Skip to main content
Log in

Impact of the magnetic field on the structure of accretion disks in semi-detached binaries

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

We discuss characteristic features of the magnetic gas-dynamical structure of the flows in a semi-detached binary system obtained from three-dimensional simulations, assuming that the intrinsic magnetic field of the accreting star is dipolar. The turbulent diffusion of the magnetic field is taken into account. The SS Cyg system is considered as an example. Including the magnetic field can alter the basic parameters of the accretion disk, such as the accretion rate and the characteristic density. The magnetic field in the disk is primarily toroidal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Warner, Cataclysmic Variable Stars (Cambridge Univ., Cambridge, 1995).

    Google Scholar 

  2. V.M. Lipunov, Astrophysics of Neutron Stars (Nauka, Moscow, 1987; Springer, New York, 1992).

    Google Scholar 

  3. A. J. Norton, J. A. Wynn, and R. V. Somerscales, Astrophys. J. 614, 349 (2004).

    Article  ADS  Google Scholar 

  4. C. G. Campbell, Magnetohydrodynamics in Binary Stars (Kluwer Academic, Dordrecht, Boston, London, 1997).

    Google Scholar 

  5. R. D. Blandford and D. G. Payne, Mon. Not. R. Astron. Soc. 199, 883 (1982).

    MATH  ADS  Google Scholar 

  6. E. P. Velikhov, Zh. Éksp. Teor. Fiz. 36, 1398 (1959).

    Google Scholar 

  7. S. A. Balbus and J. F. Hawley, Rev. Mod. Phys. 70, 1 (1998).

    Article  ADS  Google Scholar 

  8. D.V. Bisikalo, A.A. Boyarchuk, O.A. Kuznetsov, and V. M. Chechetkin, Astron. Zh. 77, 31 (2000) [Astron. Rep. 44, 26 (2000)].

    Google Scholar 

  9. D.V. Bisikalo, A.A. Boyarchuk, P.V. Kaĭgorodov, and O. A. Kuznetsov, Astron. Zh. 80, 879 (2003) [Astron. Rep. 47, 809 (2003)].

    Google Scholar 

  10. D. V. Bisikalo, A. A. Boyarchuk, P. V. Kaigorodov, and O. A. Kuznetsov, Astron. Zh. 81, 494 (2004) [Astron. Rep. 48, 449 (2004)].

    Google Scholar 

  11. D. V. Bisikalo, A. A. Boyarchuk, P. V. Kaigorodov, and O. A. Kuznetsov, Astron. Zh. 82, 701 (2005) [Astron. Rep. 49, 701 (2005)].

    Google Scholar 

  12. A. V. Koldoba, M. M. Romanova, G. V. Ustyugova, and R. V. E. Lovelace, Astrophys. J. 576, L53 (2002).

    Article  ADS  Google Scholar 

  13. M. M. Romanova, G. V. Ustyugova, A. V. Koldoba, et al., Astrophys. J. 595, 1009 (2003).

    Article  ADS  Google Scholar 

  14. M. M. Romanova, G. V. Ustyugova, A. V. Koldoba, et al., Astrophys. J. 610, 920 (2004).

    Article  ADS  Google Scholar 

  15. M. M. Romanova, G. V. Ustyugova, A. V. Koldoba, et al., Astrophys. J. 616, L151 (2004).

    Article  ADS  Google Scholar 

  16. A. R. King, Mon. Not. R. Astron. Soc. 261, 144 (1993).

    ADS  Google Scholar 

  17. G. A. Wynn and A. R. King, Mon. Not. R. Astron. Soc. 275, 9 (1995).

    ADS  Google Scholar 

  18. G. A. Wynn, A. R. King, and K. Horne, Mon. Not. R. Astron. Soc. 286, 436 (1997).

    ADS  Google Scholar 

  19. A. R. King and G. A. Wynn, Mon. Not. R. Astron. Soc. 310, 203 (1999).

    Article  ADS  Google Scholar 

  20. N. R. Ikhsanov, V. V. Neustroev, and N. G. Beskrovnaya, Astron. Astrophys. 421, 1131 (2004).

    Article  ADS  Google Scholar 

  21. A. J. Norton, O. W. Butters, T. L. Parker, and G. A. Wynn, Astrophys. J. 672, 524 (2008).

    Article  ADS  Google Scholar 

  22. D. P. Cox and E. Daltabuit, Astrophys. J. 167, 113 (1971).

    Article  ADS  Google Scholar 

  23. A. Dalgarno and R. A. McCray, Ann. Rev. Astron. Astrophys. 375 (1972).

  24. J. C. Raymond, D. P. Cox, and B. W. Smith, Astrophys. J. 204, 290 (1976).

    Article  ADS  Google Scholar 

  25. L. Spitzer, Physical Processes in the Interstellar Medium (Wiley, New York, 1978; Mir, Moscow, 1981).

    Google Scholar 

  26. K. G. Powell, P. L. Roe, T. J. Linde, et al., J. Comp. Phys. 154, 284 (1999).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. T. Tanaka, J. Comp. Phys. 111, 381 (1994).

    Article  MATH  ADS  Google Scholar 

  28. A. G. Kulikovskii, N. V. Pogorelov, and A. Yu. Semenov, Mathematical Aspects of Numerical Solution of Hyperbolic Systems (Fizmatlit, Moscow, 2001; Chapman and Hall/CRC, Boca Raton, 2000).

    MATH  Google Scholar 

  29. E. Parker, Conversations on Electric and Magnetic Fields in the Cosmos (Princeton Univ., Princeton, 2007).

    Google Scholar 

  30. N. I. Shakura, Astron. Zh. 49, 921 (1972) [Sov. Astron. 16, 756 (1972)].

    ADS  Google Scholar 

  31. S. I. Braginskii, Zh. Eksp. Teor. Fiz. 47, 2178 (1964) [Sov. Phys. JETP 20, 1462 (1964)].

    Google Scholar 

  32. G. S. Bisnovatyi-Kogan and A. A. Ruzmaikin, Astrophys. Space. Sci. 42, 401 (1976).

    Article  ADS  Google Scholar 

  33. A. G. Zhilkin, Matem.Modelir. (2009, in print).

  34. A.G. Zhilkin, Zh. Vych. Mat. Mat. Fiz. 47, 1898 (2007).

    MathSciNet  Google Scholar 

  35. A. A. Samarskii, The Theory of Differential Schemes (Nauka, Moscow, 1989; Marcel Dekker, New York, 2001).

    Google Scholar 

  36. A. G. Zhilkin, in Parallel Calculation Technologies PAVT-2007, Proc. of the Intern. Sci. Conf. (Yuzhn. Ural. Gos. Univ., Chelyabinsk, 2007), Vol. 1, p. 256.

    Google Scholar 

  37. F. Giovannelli, S. Gaudenzi, C. Rossi, and A. Piccioni, Acta Astron. 33, 319 (1983).

    ADS  Google Scholar 

  38. G. Fabbiano, L. Hartmann, J. Raymond, et al., Astrophys. J. 243, 911 (1981).

    Article  ADS  Google Scholar 

  39. D. Kjurkchieva, D. Marchev, and W. Ogloza, Astropys. Space Sci. 262, 53 (1999).

    Article  ADS  Google Scholar 

  40. E. M. Sion, Publ. Astron. Soc. Pacif. 111, 532 (1999).

    Article  ADS  Google Scholar 

  41. I. G. Martinez-Pais, F. Giovannelli, C. Rossi, and S. Gaudenzi, Astron. Astrophys. 291, 455 (1994).

    ADS  Google Scholar 

  42. A. G. Zhilkin and D. V. Bisikalo, in Proc. of the All-Russ. Astron. Conf. VAK-2007 (Kaz. Gos.Univ., Kazan’, 2007), p. 268.

    Google Scholar 

  43. A. Yu. Sytov, P. V. Kaĭgorodov, D. V. Bisikalo, et al., Astron. Zh. 84, 926 (2007) [Astron. Rep. 51, 836 (2007)].

    Google Scholar 

  44. D. V. Bisikalo, D. A. Kononov, P. V. Kaĭgorodov, et al., Astron. Zh. 85, 356 (2008) [Astron. Rep. 52, 318 (2008)].

    Google Scholar 

  45. K. Sawada, T. Matsuda, and I. Hachisu, Mon. Not. R. Astron. Soc. 219, 75 (1986).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.G. Zhilkin, D.V. Bisikalo, 2009, published in Astronomicheskiĭ Zhurnal, 2009, Vol. 86, No. 5, pp. 475–484.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhilkin, A.G., Bisikalo, D.V. Impact of the magnetic field on the structure of accretion disks in semi-detached binaries. Astron. Rep. 53, 436–445 (2009). https://doi.org/10.1134/S1063772909050072

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772909050072

PACS numbers

Navigation