Skip to main content
Log in

The cosmological constant (a modern view)

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

We briefly discuss a modern view of the cosmological constant. It is suggested that the cosmological constant was “hardened” at E ∼ 150 MeV after the latest (quark-gluon) phase transition. Until this energy was reached, the vacuum component of the Universe evolved (decreased) in a series of discontinuous jumps; i.e., condensates of quantum fields made negative contributions to its positive energy density. This was the quintessence period of the evolution of the Universe, when it underwent an intense loss of symmetry during the first fractions of a microsecond of its existence. However, this point of view is not without criticism, and other approaches are considered. In particular, the small value of the cosmological constant and its ability to accelerate the expansion of the Universe is of great interest. Although all available data on the cosmological constant were recently summarized and classified by S. Nobbenhuis, no satisfactory solution to this problemhas been reached, and this represents a major difficulty for progress in quantum-gravity theory and cosmology. We briefly discuss the possibility for stars to be formed from dark energy (vacuum stars) and the extension of holographic ideas to the entire Universe. We also consider the possibility of solving the problem of the cosmological constant by introducing a universal wave function; i.e., quantum decoherence, which implies the rejection of the Copenhagen interpretation of quantum mechanics and the acceptance of H. Everett’s point of view.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ya. B. Zel’dovich, Pis’ma Zh. Eksp. Teor. Fiz. 6, 883 (1967) [JETP Lett. 6, 316 (1967)].

    Google Scholar 

  2. N. S. Kardashev, Astron. Zh. 74, 803 (1988) [Sov. Astron. 41, 715 (1988)].

    Google Scholar 

  3. A. Vilenkin, Phys. Lett. B 117, 2528 (1982).

    Google Scholar 

  4. F. Englert, http://server.physics.miami.edu/cgc; hep-th/0406162 (2004).

  5. K. C. Wali, hep-th/0605135 (2006).

  6. A. Dolgov, hep-ph/0405089 (2004).

  7. V. Burdyuzha, O. Lalakulich, Ya. Ponomarev, and G. Vereshkov, Phys. Rev. D 55, R7340 (1997).

    Article  ADS  Google Scholar 

  8. L. Marochnik, D. Usikov, and G. Vereshkov, private communication (2009); e-Print arXiv: 0811.4484.

  9. M. Pietroni, astro-ph/0505615 (2005).

  10. V. Burdyuzha, in Particles, Strings, Cosmology, Ed. by P. Nath (World Sci., 1999), p. 101.

  11. V. Burdyuzha, arXiv:0801.0047v1 [astro-ph] (2008).

  12. V. Burdyuzha and G. Vereshkov, Astrophys. Space Sci. 305, 235 (2006).

    Article  MATH  ADS  Google Scholar 

  13. V. Burdyuzha, G. Vereshkov, O. Lalakulich, and Yu. Ponomarev, gr-gc/9907101 (1999).

  14. V. Sahni and A. Starobinsky, Intern. J. Mod. Phys. D 9, 373 (2000); arXiv:astro-ph/0610026 (2006).

    ADS  Google Scholar 

  15. V. Sahni and A. Starobinsky, Intern. J. Mod. Phys. D 15, 2105 (2006).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. S. Weinberg, Rev.Mod. Phys. 61, 1 (1989).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. F. R. Kinkhamer and G. E. Volovik, arXiv:0711.3170 [gr-qc] (2007).

  18. G. E. Volovik, arXiv:0801/2714 [gr-qc] (2008).

  19. S. Hawking, Phys. Lett. 134, 403 (1984).

    MathSciNet  Google Scholar 

  20. G. t’Hooft and S. Nobbenhuis, gr-gc/0602076 (2006).

  21. S. Nobbenhuis, gr-gc/0609011 (2006).

  22. A. A. Andrianov, F. Cannata, P. Giacconi, et al., Phys. Lett. B 651, 306 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  23. V. V. Burdyuzha, Preprint Fiz. Inst. Akad. Nauk No. 15 (2006).

  24. A. Arbey, astro-ph/0601274 (2006).

  25. F. S. Lobo, gr-gc/0508115 (2005).

  26. G. Chapline, Texas Symposium on Relativistic Astrophysics (2004); arXiv:astro-ph/0503200 (2005).

  27. I. Dymnikova, gr-gc/0112052 (2001).

  28. J. Barbierri and G. Chapline, Phys. Lett. B 590, 8 (2004).

    Article  ADS  Google Scholar 

  29. C. Balazs and I. Szapudi, hep-th/0603133 (2006).

  30. G. t’Hooft, gr-gc/9310026 (1993).

  31. W. Fischer and L. Susskind, hep-th/9806039 (1998).

  32. B. Mashhoon and P. Wesson, gr-gc/0401002 (2004).

  33. R. Gannouji, D. Polarski, A. Ranquet, and A. Starobinsky, J. Cosmol. Astropart. Phys. 0609, 016 (2006); arXiv:astro-ph/0701650 (2007).

    Article  ADS  Google Scholar 

  34. A. Starobinsky, Pis’ma Zh. Eksp. Teor. Fiz. 86, 183 (2007) [JETP Lett. 86, 157 (2007)]; arXiv:0706.2041 [astro-ph] (2007).

    Google Scholar 

  35. A. Polyakov, Usp. Fiz. Nauk 136, 538 (1982) [Sov. Phys. Usp. 25, 187 (1982)]; hep-th/0006132 (2000).

    ADS  Google Scholar 

  36. R. Jackiw, C. Mumez, and S.-Y. Pi, hep-th/0502215 (2005).

  37. P. Chen and Je-An Gu, arXiv:0712.2441 [hep-th] (2007).

  38. R. Bousso, arXiv:07084231v2 [hep-th] (2007).

  39. S. S. Gershtein, A. A. Logunov, and M. A. Mestvirishvili, Phys. Part. Nucl. 38, 569 (2007).

    Article  Google Scholar 

  40. R. A. Daly and S. G. Djorgovski, arXiv:0710.5690v1 [astro-ph] (2007).

  41. Y. Kodama, D. Jonetoku, T. Murakami, et al., Monthly Nat. Roy. Astron. Soc. (in pres 2009); arXiv:0802.3428v1 [astro-ph] (2008).

  42. H. Everett, Rev. Mod. Phys. 29, 454 (1957).

    Article  ADS  MathSciNet  Google Scholar 

  43. A. D. Chernin, Usp. Fiz. Nauk 178, 267 (2008) [Phys. Usp. 51, 253 (2008)].

    Article  Google Scholar 

  44. V.N. Lukash and V. A. Rubakov, Usp. Fiz.Nauk 178,301 (2008) [Phys. Usp. 51, 283 (2008)].

    Article  Google Scholar 

  45. M. Sami, e-print arXiv: 0901.0756.

  46. E. Zhao, e-print arXiv: 0810.5506.

  47. V. Sahni, Yu. Shtanov, e-print arXiv: 0811.3839.

  48. R. Daly, S. ’Djordovski, K. Freeman, et al., Astrophys. J. 677, 1 (2008).

    Article  ADS  Google Scholar 

  49. E. Greenwood, E. Halstead, R. Poltis, D. Stojkovic, et al., e-print arXiv: 0810.5343. A. Cooney, S. De Deo, D. Psaltis, e-print arXiv: 0811.3635.

  50. M. Rees, “Before the Beginning,” Addison-Wesley, 1997.

  51. A. De Simone, A. Guth, A. Linde, e-print arXiv: 0808.3778.

  52. A. Linde, Yu. Vanchurin, S. Winitski, e-print arXiv: 0812.0005.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.V. Burdyuzha, 2009, published in Astronomicheskiĭ Zhurnal, 2009, Vol. 86, No. 5, pp. 419–427.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burdyuzha, V.V. The cosmological constant (a modern view). Astron. Rep. 53, 381–388 (2009). https://doi.org/10.1134/S1063772909050011

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772909050011

PACS numbers

Navigation