Skip to main content
Log in

Different magneto-rotational supernovae

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

We present the results of two-dimensional calculations of a magneto-rotational (MR) supernova explosion with a collapsing core for various core masses, rotational angular momenta, and magnetic-field configurations. It is shown that the MR mechanism produces an explosion energy that corresponds to observed values. The form of the explosion depends substantially on the initial configuration of the magnetic field. MR instability develops during the evolution of the magnetic field in an MR supernova explosion, resulting in an exponential increase of all components of the magnetic field, thereby substantially decreasing the time scale of the MR explosion. The energy of the supernova increases with the core’s mass and initial rotational energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. A. Colgate and R. H. White, Astrophys. J. 143, 626 (1966).

    Article  ADS  Google Scholar 

  2. E. Müller and H.-T. Janka, Modern Astron. 7, 103 (1994).

    ADS  Google Scholar 

  3. A. Burrows, E. Livne, L. Dessart, and C. D. Ott, Murphy J., New Astron. Rev. 50, 487 (2006).

    Article  ADS  Google Scholar 

  4. S. G. Moiseenko, G. S. Bisnovatyi-Kogan, and N. V. Ardeljan,Mon. Not. Roy. Astron. Soc. 370, 501 (2006).

    ADS  Google Scholar 

  5. J. M. Blondin, A. Mezzacappa, and C. DeMarino, Astrophys. J. 584, 971 (2003).

    Article  ADS  Google Scholar 

  6. N. Ohnishi, K. Kotake, and S. Yamada, Astrophys. J. 641, 1018 (2006).

    Article  ADS  Google Scholar 

  7. G. S. Bisnovatyi-Kogan, Astron. Zh. 47, 813 (1970) [Sov. Astron. 14, 652 (1971)].

    ADS  Google Scholar 

  8. J. M. LeBlanc and J. R. Wilson, Astrophys. J. 161, 541 (1970).

    Article  ADS  Google Scholar 

  9. G. S. Bisnovatyi-Kogan, Yu. P. Popov, and A. A. Samokhin, Astrophys. Space Sci. 41, 321 (1976).

    Article  ADS  Google Scholar 

  10. N. V. Ardeljan, G. S. Bisnovatyi-Kogan, and Yu. P. Popov, Astron. Zh. 56, 1244 (1979) [Sov. Astron. 23, 705 (1979)].

    ADS  Google Scholar 

  11. N. V. Ardeljan, G. S. Bisnovatyi-Kogan, and S. G. Moiseenko, Mon. Not. Roy. Astron. Soc. 359, 333 (2005).

    Article  ADS  Google Scholar 

  12. N. V. Ardeljan, G. S. Bisnovatyi-Kogan, and S. G. Moiseenko, Astron. Astrophys. 355, 1181 (2000).

    ADS  Google Scholar 

  13. A. Burrows, L. Dessart, E. Livne, et al., Astrophys. J. 664, 416 (2007).

    Article  ADS  Google Scholar 

  14. K. Kotake, H. Sawai, S. Yamada, and K. Sato, Astrophys. J. 608, 391 (2004).

    Article  ADS  Google Scholar 

  15. Y. Masada, T. Sano, and K. Shibata, Astrophys. J. 655, 447 (2007).

    Article  ADS  Google Scholar 

  16. Y. Mizuno, S. Yamada, S. Koide, and K. Shibata, Astrophys. J. 606, 395 (2004).

    Article  ADS  Google Scholar 

  17. H. Sawai, K. Kotake, and S. Yamada, Astrophys. J. 631, 446 (2005).

    Article  ADS  Google Scholar 

  18. T. Takiwaki, K. Kotake, S. Nagataki, and K. Sato, Astrophys. J. 616, 1086 (2004).

    Article  ADS  Google Scholar 

  19. J. C. Wheeler, D. L. Meier, and J. R. Wilson, Astrophys. J. 568, 807 (2002).

    Article  ADS  Google Scholar 

  20. S. Yamada and H. Sawai, Astrophys. J. 608, 907 (2004).

    Article  ADS  Google Scholar 

  21. N. V. Ardelyan, G. S. Bisnovatyi-Kogan, Yu. P. Popov, and S. V. Chernigovskii, Astron. Zh. 64, 761 (1987) [Sov. Astron. 31, 398 (1987)].

    ADS  Google Scholar 

  22. G. Baum, C. Pethick, and P. Sutherland, Astrophys. J. 170, 197 (1971).

    Google Scholar 

  23. R. Malone, M. B. Johnson, and H. A. Bethe, Astrophys. J. 199, 741 (1975).

    Article  ADS  Google Scholar 

  24. L. N. Ivanova, V. S. Imshennik, and D. K. Nadezhin, Nauchn. Inform. Astron. Sovet Akad. Nauk 13, 3 (1969).

    ADS  Google Scholar 

  25. P. Schindler et al., Astrophys. J. 313, 531 (1987).

    Article  ADS  Google Scholar 

  26. N. V. Ardelyan, K. V. Kosmachevskii, and S. V. Chernigovskii, Problems in the Construction and Investigation of Conservative Difference Schemes in Magneto-Gas Dynamics (Moscow State Univ., Moscow, 1987) [in Russian].

    Google Scholar 

  27. N. V. Ardelyan and K. V. Kosmachevskii, in Mathematical Simulations Ed. A. N. Tikhonov, V. A. Sadovnichii, V. I. Sergeev, et al. (Moscow State Univ., Moscow, 1993), p. 25 [in Russian].

    Google Scholar 

  28. N. V. Ardelyan, G. S. Bisnovatyi-Kogan, K. V. Kosmachevskii, and S.G. Moiseenko,Astron. Astrophys. Suppl. Ser. 115, 573 (1996).

    ADS  Google Scholar 

  29. N. V. Ardelyan, G. S. Bisnovatyi-Kogan, K. V. Kosmachevskii, and S. G. Moiseenko, Astrofizika 47, 47 (2004).

    Google Scholar 

  30. R. Buras, M. Ramp, H.-Th. Janka, K. Kifonidis, Phys. Rev. Lett. 90, 241101 (2003).

    Google Scholar 

  31. S. Akiyama, J. C. Wheeler, D. L. Meier, and I. Lichtenstadt, Astrophys. J. 584, 954 (2003).

    Article  ADS  Google Scholar 

  32. H. C. Spruit, Astron. Astrophys. 349, 189 (1999).

    ADS  Google Scholar 

  33. H. Lamb, Proc. London Math. Soc. 7, 122 (1909).

    Article  Google Scholar 

  34. A. G. Kosovichev and Yu. P. Popov, Zh. Vych.Matem. Mat. Fiz. 19, 1253 (1979).

    Google Scholar 

  35. R. J. Tayler, Mon. Not. Roy. Astron. Soc. 161, 365 (1973).

    ADS  Google Scholar 

  36. H. C. Spruit, Astron. Astrophys. 381, 923 (2002).

    Article  ADS  Google Scholar 

  37. S. A. Colgate, L. M. Krauss, D. N. Shramm, and T. P. Walker, Astron. Lett. Commun. 27, 411 (1900).

    ADS  Google Scholar 

  38. J. Dungey, Cosmic Electrodynamics (Cambridge Univ., London, 1938; Gosatomizdat, Moscow, 1961).

    Google Scholar 

  39. J. C. L. Wang, M. E. Sulkanen, and R. V. E. Lovelace, Astrophys. J. 390, 46 (1992).

    Article  ADS  Google Scholar 

  40. G. S. Bisnovatyi-Kogan and S. G. Moiseenko, Astron. Zh. 69, 563 (1992) [Sov. Astron. 36, 285 (1992)].

    ADS  Google Scholar 

  41. G. S. Bisnovatyi-Kogan, Astron. Astrophys. Trans. 3, 287 (1993).

    Article  ADS  Google Scholar 

  42. A. Burrows, J. Hayes, and B. A. Fryxell, Astrophys. J. 450, 830 (1995).

    Article  ADS  Google Scholar 

  43. H.-Th. Janka and E. Müller, Astrophys. J. Lett. 448, L109 (1995).

    Article  ADS  Google Scholar 

  44. S. Johnston, G. Hobbs, S. Vigeland, et al.,Mon. Not. Roy. Astron. Soc. 364, 1397 (2005).

    Article  ADS  Google Scholar 

  45. D. R. Lorimer, Living Rev. Relativ. 8, 7L (2005).

    ADS  Google Scholar 

  46. E. P. Velikhov, Zh. Eksp. Teor. Fiz. 36, 1398 (1959) [Sov. Phys. JETP 9, 995 (1959)].

    Google Scholar 

  47. S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (New York, Dover, 1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © G.S. Bisnovatyi-Kogan, S.G. Moiseenko, N.V. Ardelyan, 2008, published in Astronomicheskiĭ Zhurnal, 2008, Vol. 85, No. 12, pp. 1109–1121.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bisnovatyi-Kogan, G.S., Moiseenko, S.G. & Ardelyan, N.V. Different magneto-rotational supernovae. Astron. Rep. 52, 997–1008 (2008). https://doi.org/10.1134/S1063772908120056

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772908120056

PACS numbers

Navigation