Skip to main content
Log in

The formation and evolution of the most massive stars

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

We consider the formation of massive stars under the assumption that a young star accretes material from the protostellar cloud through its accretion disk while losing gas in the polar directions via its stellar wind. The mass of the star reaches its maximum when the intensity of the gradually strengthening stellar wind of the young star becomes equal to the accretion rate. We show that the maximum mass of the forming stars increases with the temperature of gas in the protostellar cloud T 0, since the rate at which the protostellar matter is accreted increases with T 0. Numerical modeling indicates that the maximum mass of the forming stars increases to ∼900 M for T 0 ∼ 300 K. Such high temperatures of the protostellar gas can be reached either in dense star-formation regions or in the vicinity of bright active galactic nuclei. It is also shown that, the lower the abundance of heavy elements in the initial stellar material Z, the larger the maximum mass of the star, since the mass-loss rate due to the stellar wind decreases with decreasing Z. This suggests that supermassive stars with masses up to 106 M could be formed at early stages in the evolution of the Universe, in young galaxies that are almost devoid of heavy elements. Under the current conditions, for T 0 = (30–100) K, the maximum mass of a star can reach ∼100M , as is confirmed by observations. Another opportunity for the most massive stars to increase their masses emerges in connection with the formation and early stages of evolution of the most massive close binary systems: the most massive stars can be produced either by coalescence of the binary components or via mass transfer in such systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Firmani and A. Tutukov, Astron. Astrophys. 288, 713 (1994).

    ADS  Google Scholar 

  2. M. Krumholz and I. Bonnel, astro-ph/0712.0828 (2007).

  3. C. Firmani and A. Tutukov, Astron. Astrophys. 264, 37 (1992).

    ADS  Google Scholar 

  4. Y. Liu, S. Shapiro, and B. Stephens, astro-ph/0706.2360 (2007).

  5. R. M. Humphreys, Astron. J. 75, 602 (1970).

    Article  ADS  Google Scholar 

  6. R. M. Humphreys, Astrophys. J., Suppl. Ser. 29, 389 (1975).

    Google Scholar 

  7. R. M. Humphreys, Astrophys. J., Suppl. Ser. 38, 309 (1978).

    Article  ADS  Google Scholar 

  8. J. P. Emerson, in Formation and Evolution of Low Mass Stars, NATOASIC Proc. 241, 21 (1988).

    ADS  Google Scholar 

  9. R. Rozanski and M. Rowan-Robinson, Mon. Not. R. Astron. Soc. 271, 1530 (1994).

    ADS  Google Scholar 

  10. L. R. Yungelson, E. P. J. van den Heuvel, J. S. Vink, et al., Astron. Astrophys. 477, 223 (2008).

    Article  ADS  Google Scholar 

  11. J. S. Vink, astro-ph/0709.3007 (2007).

  12. E. Behar, R. Nordon and N. Soker, Astrophys. J. 666, L97 (2007).

    Article  ADS  Google Scholar 

  13. M. Corcoran and K. Hamaguchi, astro-ph/0703039 (2007).

  14. A. Maeder and V. Desjacques, Astron. Astrophys. 372, 9 (2001).

    Article  ADS  Google Scholar 

  15. A. G. Masevich and A. V. Tutukov, Stellar Evolution: Theory and Observations (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  16. C. Hayashi, Prog. Theor. Phys. 5, 224 (1950).

    Article  ADS  Google Scholar 

  17. C. Hayashi, Ann. Rev. Astron. Astrophys. 4, 171 (1966).

    Article  ADS  Google Scholar 

  18. H. Bether, astro-ph/0712.1109 (2007).

  19. T. P. Snow and D. C. Morton, Astrophys. J., Suppl. Ser. 32, 429 (1976).

    Article  ADS  Google Scholar 

  20. M. J. Barlow and M. Cohen, Astrophys. J. 213, 737 (1973).

    Article  ADS  Google Scholar 

  21. S. Antoniucci, B. Nisini, et al., astro-ph/0710.5609 (2007).

  22. E. Keto, Astrophys. J. 666, 976 (2007).

    Article  ADS  Google Scholar 

  23. P. D. Klaassen and C. D. Wilson, astro-ph/0710.3785 (2007).

  24. S. Kraus, T. Preibisch, and K. Ohnaka, astro-ph/0711.4988 (2007).

  25. A. Bik, A. Lenorzer, W. Thi, et al., astro-ph/0712.0301 (2007).

  26. Z. Jiang, M. Tamura, M. Hoare, et al., astro-ph/0801.1164 (2007).

  27. T. Currie, S. Kenyon, Z. Balog, et al., astro-ph/0709.1847 (2007).

  28. E. Keto and K. Wood, Astrophys. J. 637, 850 (2006).

    Article  ADS  Google Scholar 

  29. A. Jappsen, R. Klessen, S. Glover, et al., astro-ph/0709.3530 (2007).

  30. H. Yorke and E. Krugel, Astron. Astrophys. 54, 183 (1977).

    ADS  Google Scholar 

  31. A. V. Tutukov and B. M. Shustov, Nauchn. Inform. Astrosovet Akad. Nauk SSSR 46, 111 (1979).

    ADS  Google Scholar 

  32. M. R. Mokiem, A. de Koter, C. J. Evans, et al., astro-ph/0704.1113 (2007).

  33. J. S. Vink, A. de Koter, and R. Kotak, astro-ph/0611749 (2006).

  34. J. S. Vink and R. Kotak, astro-ph/0704.2689 (2007).

  35. R. Kudritzki and M. Urbaneja, astro-ph/0607460 (2006).

  36. J. S. Vink, in Stars with the B[e] Phenomenon (Astron. Soc. Pac., San Francisco, 2006), Astron. Soc. Pac. Conf. Ser. 355, 173 (2006).

    Google Scholar 

  37. M. R. Mokiem, A. de Koter, J. S. Vink, et al., astro-ph/0708.2042 (2007).

  38. R. Hirschi, C. Chiappini, G. Meynet, et al., astro-ph/0709.1886 (2007).

  39. A. J. Onifer and K. G. Gayley, astro-ph/0707.1834 (2007).

  40. J. Eldridge, R. Izzard, and Ch. Tout, astro-ph/0711.3079 (2007).

  41. A. Maeder, G. Meynet, and R. Hirschi, in The Fate of the Most Massive Stars, Ed. by R. Humphreys and K. Stanek (Astron. Soc. Pac., San Francisco, 2005), Astron. Soc. Pac. Conf. Ser. 332, 3 (2005).

    Google Scholar 

  42. P. Crowther, S. Carpano, L. Hadfield, et al., astro-ph/ 0705.1544 (2007).

  43. A. M. Cherepashchuk, Astron. Zh. 67, 955 (1990) [Sov. Astron. 34, 481 (1990)].

    ADS  Google Scholar 

  44. S. Marchenko, C. Foellmi, A. Moffat, et al., astro-ph/0701516 (2007).

  45. L. Oskinova, W. Hamman, and A. Feldmeier, astro-ph/0704.2390 (2007).

  46. K. Weis, Rev. Mod. Astron. 14, 261 (2001).

    ADS  MathSciNet  Google Scholar 

  47. C. A. Tremonti, T. M. Heckman, G. Kauffmann, et al., Astrophys. J. 613, 898 (2004).

    Article  ADS  Google Scholar 

  48. V. Bromm, P. S. Coppi and R. B. Larson, in Lighthouses of the Universe: The Most Luminous Celestial Objects and Their Use for Cosmology, Ed. by M. Gilfanov, R. Sunyaev, and E. Churazov (Springer, New York, 2002), p. 316.

    Chapter  Google Scholar 

  49. A. B. Men’shchikov and A. V. Tutukov, Astrofizika 29, 495 (1988) [Astrophys. 29, 714 (1988)].

    ADS  Google Scholar 

  50. T. Ohkubo, H. Umeda, K. Maeda, et al.,Astrophys. J. 645, 1352 (2006).

    Article  ADS  Google Scholar 

  51. R. Wilson and T. C. Starr,Mon. Not. R. Astron. Soc. 176, 625 (1976).

    ADS  Google Scholar 

  52. D. Terrel, V. Munari, T. Zwitter, et al., astro-ph/0309366 (2003).

  53. S. Zwart and E. P. J. van den Heuvel, astro-ph/0711.2293 (2007).

  54. Y. Hyodo, M. Tsujimoto, K. Koyama, et al., astro-ph/0712.0280 (2007).

  55. N. Markova and J. Puls, astro-ph/0711.1110v2 (2007).

  56. C. Zier,Mon. Not. R. Astron.Soc. 378, 1309 (2007).

  57. J. Jordan, G. Sivakov, D. McLaughlin, et al., astro-ph/0711.2303 (2007).

  58. F. Martins, D. J. Hillier, T. Paumard, et al., astro-ph/0711.0657 (2007).

  59. C. A. Iglesias and F. J. Rogers, Astrophys. J. 464, 943 (1996).

    Article  ADS  Google Scholar 

  60. D. R. Alexander and J. W. Ferguson, Astrophys. J. 437, 879 (1994).

    Article  ADS  Google Scholar 

  61. D. G. Yakovlev and V. A. Urpin, Astron. Zh. 57, 526 (1980) [Sov. Astron. 24, 303 (1980)].

    ADS  Google Scholar 

  62. G. R. Caughlan, W. A. Fowler, M. J. Harris, et al., At. Data Nucl. Data Tables 32, 197 (1985).

    Article  ADS  Google Scholar 

  63. D. Z. Vibe, A. V. Tutukov, and B. M. Shustov, Astron. Zh. 75, 3 (1998) [Astron. Rep. 42, 1 (1998)].

    Google Scholar 

  64. W. Aoki, J. Norris, S. Ryan, et al., Astrophys. J. 608, 971 (2004).

    Article  ADS  Google Scholar 

  65. S. Ekstrom, G. Meynet, and A. Maeder, astro-ph/0610310 (2006).

  66. V. S. Varshavskii and A. V. Tutukov, Nauchn. Inform. Astrosovet Akad. Nauk SSSR 32, 32 (1974).

    Google Scholar 

  67. R. Rich, Ch. Howard, D. Reitzel, et al., astro-ph/0710.5162 (2007).

  68. N. Tominaga, M. Limongi, T. Suzuki, et al., astro-ph/0711.4782 (2007).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.V. Tutukov, A.V. Fedorova, 2008, published in Astronomicheskiĭ Zhurnal, 2008, Vol. 85, No. 12, pp. 1096–1108.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tutukov, A.V., Fedorova, A.V. The formation and evolution of the most massive stars. Astron. Rep. 52, 985–996 (2008). https://doi.org/10.1134/S1063772908120044

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772908120044

PACS numbers

Navigation