Skip to main content
Log in

Nonlinear radial pulsations of Wolf-Rayet stars

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

The evolution of Population I stars with initial masses 60 M M ZAMS ≤ 120 M is computed up to the Wolf-Rayet stage, when the central helium abundance decreases to Y c ≈ 0.05. Several models from evolutionary sequences in the core helium-burning stage were used as initial conditions when solving the equations of radiative hydrodynamics for self-exciting stellar radial pulsations. The low-density envelope surrounding the compact core during the core helium burning is unstable against radial oscillations in a wide range of effective temperatures extending to T eff ∼ 105 K. The e-folding time of the amplitude growth is comparable to the dynamical time scale of the star, and, when the instability ceases growing, the radial displacement of the outer layers is comparable to the stellar radius. Evolutionary changes of the stellar radius and luminosity are accompanied by a decrease in the amplitude of radial pulsations, but, at the effective temperature T eff ≈ 105 K, the stellar oscillations are still nonlinear, with a maximum expansion velocity of the outer layers of about one-third the local escape velocity. The period of the radial oscillations decreases from 9 hr to 4 min as stellar mass decreases from M = 28 M to M = 6 M in the course of evolution. The nonlinear oscillations lead to a substantial increase of the radii of the Lagrangian mass zones compared to their equilibrium radii throughout the instability region. The instability of Wolf-Rayet stars against radial oscillations is due to the action of the κ mechanism in the iron-group ionization zone, which has a temperature of T ∼ 2 × 105 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Glatzel, M. Kiriakidis, and K. J. Fricke, Mon. Not. R. Astron. Soc. 262, L7 (1993).

    ADS  Google Scholar 

  2. W. Glatzel, M. Kiriakidis, S. Chernigovskij, and K. J. Fricke, Mon. Not. R. Astron. Soc. 303, 116 (1999).

    Article  ADS  Google Scholar 

  3. Yu. A. Fadeev and M. F. Novikova, Pis’maAstron. Zh. 29, 592 (2003) [Astron. Lett. 29, 522 (2003)].

    Google Scholar 

  4. Yu. A. Fadeev and M. F. Novikova, Pis’maAstron. Zh. 30, 778 (2004) [Astron. Lett. 30, 707 (2004)].

    Google Scholar 

  5. Yu. A. Fadeev, Pis’ma Astron. Zh. 33 (in press).

  6. T. Morel, N. St-Louis, F. F. J. Moffat, et al., Astrophys. J. 498, 413 (1998).

    Article  ADS  Google Scholar 

  7. P. M. Veen, A. M. van Genderen, K. A. van der Hucht, et al., Astron. Astrophys. 385, 585 (2002).

    Article  ADS  Google Scholar 

  8. P. M. Veen, A. M. van Genderen, P. A. Crowther, and K. A. van der Hucht, Astron. Astrophys. 385, 600 (2002).

    Article  ADS  Google Scholar 

  9. P. M. Veen, A. M. van Genderen, and K. A. van der Hucht, Astron. Astrophys. 385, 619 (2002).

    Article  ADS  Google Scholar 

  10. L. Lefèvre, S. V. Marchenko, A. F. J. Moffat, et al., Astrophys. J. 634, L109 (2005).

    Article  ADS  Google Scholar 

  11. A. Maeder, Astron. Astrophys. 147, 300 (1985).

    ADS  Google Scholar 

  12. H. Kirbiyik, Astrophys. Space Sci. 136, 321 (1987).

    Article  ADS  Google Scholar 

  13. A. N. Cox and J. H. Cahn, Astrophys. J. 326, 804 (1988).

    Article  ADS  Google Scholar 

  14. F. J. Rogers and C. A. Iglesias, Astrophys. J. 401, 361 (1992).

    Article  ADS  Google Scholar 

  15. M. J. Seaton, Y. Yan, D. Mihalas, and A. K. Pradhan, Mon. Not. R. Astron. Soc. 266, 805 (1994).

    ADS  Google Scholar 

  16. M. Kiriakidis, W. Glatzel, and K. J. Fricke, Mon. Not. R. Astron. Soc. 281, 406 (1996).

    ADS  Google Scholar 

  17. G. R. Caughlan and W. A. Fowler, At. Data Nucl. Data Tables 40, 283 (1988).

    Article  ADS  Google Scholar 

  18. E. E. Simpson, Astrophys. J. 165, 295 (1971).

    Article  ADS  Google Scholar 

  19. P. P. Eggleton, Mon. Not. R. Astron. Soc. 156, 361 (1972).

    ADS  Google Scholar 

  20. N. Langer, K. J. Fricke, and D. Sugimoto, Astron. Astrophys. 126, 207 (1983).

    ADS  Google Scholar 

  21. N. Langer, M. F. El Eid, and K. J. Fricke, Astron. Astrophys. 145, 179 (1985).

    ADS  Google Scholar 

  22. C. A. Iglesias and F. J. Rogers, Astrophys. J. 464, 943 (1996).

    Article  ADS  Google Scholar 

  23. F. J. Rogers and A. Nayfonov, Astrophys. J. 576, 1064 (2002).

    Article  ADS  Google Scholar 

  24. F. X. Timmes and D. Arnett, Astrophys. J., Suppl. Ser. 125, 277 (1999).

    Article  ADS  Google Scholar 

  25. F. X. Timmes, Astrophys. J. 528, 913 (2000).

    Article  ADS  Google Scholar 

  26. H. Nieuwenhuijzen and C. de Jager, Astron. Astrophys. 231, 134 (1990).

    ADS  Google Scholar 

  27. N. Langer, Astron. Astrophys. 220, 135 (1989).

    ADS  Google Scholar 

  28. A. Maeder, Astron. Astrophys. 120, 113 (1983).

    ADS  Google Scholar 

  29. L. A. Willson and S. J. Hill, Astrophys. J. 228, 854 (1989).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © Yu.A. Fadeev, 2008, published in Astronomicheskiĭ Zhurnal, 2008, Vol. 85, No. 8, pp. 716–727.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fadeev, Y.A. Nonlinear radial pulsations of Wolf-Rayet stars. Astron. Rep. 52, 645–655 (2008). https://doi.org/10.1134/S1063772908080052

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772908080052

PACS numbers

Navigation