Skip to main content
Log in

Population synthesis for the luminosity functions of X-ray binaries made using the “Scenario Machine”

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

Using the “Scenario Machine” (a computer code based on the Monte-Carlo method, developed to calculate the evolution of a large ensemble of binaries), we have carried out population-synthesis calculations for X-ray binaries for the purpose of modeling the X-ray luminosity functions in various type galaxies. These calculations were focused on the evolution of magnetized neutron stars. The X-ray luminosity function is not universal, and depends on the star formation rate in the galaxy. In theoretical models, it is very important to take into account the evolution of the binaries and their lifetimes in their X-ray stages. We calculated the cumulative and differential X-ray luminosity functions in galaxies with a constant star formation rate, the cumulative luminosity functions for various time intervals since the peak star formation, and curves describing the evolution of the X-ray luminosity after a star formation burst in the galaxy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Tatarintseva, V. Lipunov, E. Osminkin, and M. E. Prokhorov, in The 23rd ESLAB Symposium on Two Topics in X-Ray Astronomy, Vol. 1: X Ray Binaries (ESA, 1989), p. 653.

  2. V. M. Lipunov, K. A. Postnov, and M. E. Prokhorov, Astrophys. Space Phys. Rev. 9, 1 (1996).

    Google Scholar 

  3. V. M. Lipunov, L. M. Ozernoy, S. B. Popov, et al., Astrophys. J. 466, 234 (1996).

    Article  ADS  Google Scholar 

  4. S. B. Popov, V. M. Lipunov, M. E. Prokhorov, and K. A. Postnov, Astron. Zh. 75, 35 (1998) [Astron. Rep. 42, 29 (1998)].

    Google Scholar 

  5. J. Van Bever and D. Vanbeveren, Astron. Astrophys. 358, 462 (2000).

    ADS  Google Scholar 

  6. M. P. Muno, Astroph. J. 613, 1179 (2004).

    Article  ADS  Google Scholar 

  7. J. E. Grindlay, J. Hong, P. Zhao, et al., Astophys. J. 635, 920 (2005).

    Article  ADS  Google Scholar 

  8. A. K. H. Kong, Mon. Not. R. Astron. Soc. 346, 265 (2003).

    Article  ADS  Google Scholar 

  9. A. Georgakakis, I. Georgantopoulos, M. Vallbe, et al., Mon. Not. R. Astron. Soc. 349, 135 (2004).

    Article  ADS  Google Scholar 

  10. I. Georgantopoulos, A. Georgakakis, and E. Koulouridis, Mon. Not. R. Astron. Soc. 360, 782 (2005).

    Article  ADS  Google Scholar 

  11. H.-J. Grimm, M. Gilfanov, and R. Sunyaev, Astron. Astrophys. 391, 923 (2002).

    Article  ADS  Google Scholar 

  12. H.-J. Grimm, M. Gilfanov, and R. Sunyaev, Mon. Not. R. Astron. Soc. 339, 793 (2003).

    Article  ADS  Google Scholar 

  13. M. Gilfanov, Mon. Not. R. Astron. Soc. 349, 146 (2004).

    Article  ADS  Google Scholar 

  14. D.-W. Kim and G. Fabbiano, Astrophys. J. 611, 846 (2004).

    Article  ADS  Google Scholar 

  15. K. A. Postnov, Pis’ma Astron. Zh. 29, 424 (2003) [Astron. Lett. 29, 372 (2003)].

    Google Scholar 

  16. A. Zezas, G. Fabbiano, A. Baldi, et al., Rev. Mex. Astron. Astrofis. 20, 53 (2004).

    Google Scholar 

  17. A. Zezas and G. Fabbiano, Astrophys. J. 577, 726 (2002).

    Article  ADS  Google Scholar 

  18. K. Belczynski, V. Kalogera, A. Zezas, and G. Fabbiano, Astrophys. J. 601, 147 (2004).

    Article  ADS  Google Scholar 

  19. V. M. Lipunov, Astrophysics of Neutron Stars, Astron. Astrophys. Library (Springer, Berlin, 1992), Vol. 322.

    Google Scholar 

  20. S. A. Rappaport, P. Podsiadlowski, and E. Pfahl, Mon. Not. R. Astron. Soc. 356, 401 (2005).

    Article  ADS  Google Scholar 

  21. A. R. King, M. B. Davies, M. J. Ward, et al., Astrophys. J. 552, L109 (2001).

    Article  ADS  Google Scholar 

  22. V. M. Lipunov, Astrophys. Space Sci. 82, 343 (1982).

    Article  MATH  ADS  Google Scholar 

  23. V. M. Lipunov, Astron. Zh. 59, 87 (1982) [Sov. Astron. 26, 54 (1982)].

    ADS  Google Scholar 

  24. Q. Z. Liu, J. van Paradijs, and E. P. J. van den Heuvel, Astron. Astrophys. 147, 25 (2000).

    ADS  Google Scholar 

  25. Q. Z. Liu, J. van Paradijs, and E. P. J. van den Heuvel, Astron. Astrophys. 368, 1021 (2001).

    Article  ADS  Google Scholar 

  26. N. V. Raguzova and S. B. Popov, Astron. Astrophys. Trans. 24, 151 (2005).

    Article  ADS  Google Scholar 

  27. E. P. J. van den Heuvel, in Interacting Binaries, Ed. by S. N. Shore, M. Livio, and E. P. J. van den Heuvel (Springer, Berlin, 1994), p. 103.

    Google Scholar 

  28. A. M. Cherepashchuk, R. A. Sunyaev, S. N. Fabrika, et al., Astron. Astrophys. 437, 561 (2005).

    Article  ADS  Google Scholar 

  29. S. V. Karpov and V. M. Lipunov, Pis’ma Astron. Zh. 27, 758 (2001) [Astron. Lett. 27, 645 (1982)].

    Google Scholar 

  30. V. M. Lipunov, Pis’ma Astron. Zh. 8, 358 (1982) [Sov. Astron. Lett. 8, 194 (1982)].

    ADS  Google Scholar 

  31. V. M. Lipunov, K. A. Postnov, and M. E. Prokhorov, Astron. Astrophys. 310, 489 (1996).

    ADS  Google Scholar 

  32. V. M. Lipunov, K. A. Postnov, M. E. Prokhorov, and A. I. Bogomazov, arXiv: 0704.1387v1 (2007).

  33. A. I. Bogomazov, M. K. Abubekerov, and V. M. Lipunov, Astron. Rep. 49, 644 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.I. Bogomazov, V.M. Lipunov, 2008, published in Astronomicheskiĭ Zhurnal, 2008, Vol. 85, No. 4, pp. 336–348.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bogomazov, A.I., Lipunov, V.M. Population synthesis for the luminosity functions of X-ray binaries made using the “Scenario Machine”. Astron. Rep. 52, 299–310 (2008). https://doi.org/10.1134/S1063772908040045

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772908040045

PACS numbers

Navigation