Skip to main content
Log in

Long-period variations of pulsar emission and the dynamical ellipticity of neutron stars

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

Assuming that the observed periodic variations of pulsar emission are due to the free precession of the spin axis, we investigate the evolution of the rotation of a two-layer neutron star using the Hamiltonian method of Getino. We model the dynamical characteristics of a rotating neutron star using the observed variations of the emission of seven pulsars. We estimate the dependence of the period of the Chandler wobble, the period of precession of the spin axis, and the dynamical ellipticity of a neutron star on the model used to describe the super-dense neutron matter and the mass of the star.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. Levin and C. D’Angelo, Astrophys. J. 613, 1157 (2004).

    Article  ADS  Google Scholar 

  2. B. Link and C. Cutler, Mon. Not. R. Astron. Soc. 336, 211 (2002).

    Article  ADS  Google Scholar 

  3. S. Thorsett, Z. Arzoumanian, F. Camilo, and A. Lyne, Astrophys. J. 523, 763 (1999).

    Article  ADS  Google Scholar 

  4. B. Link and R. I. Epstein, Astrophys. J. 556, 392 (2001).

    Article  ADS  Google Scholar 

  5. I. H. Stairs, A. G. Lyne, and S. L. Shemar, Nature 406, 484 (2000).

    Article  ADS  Google Scholar 

  6. J. M. Cordes and G. S. Downs, Astrophys. J., Suppl. Ser. 59, 343 (1985).

    Article  ADS  Google Scholar 

  7. T. V. Shabanova and J. O. Urama, in Pulsar Astronomy-2000 and Beyond, Astron. Soc. Pac. Conf. Ser. 202, 99 (2000).

    ADS  Google Scholar 

  8. T. V. Shabanova, A. G. Lyne, and J. O. Urama, Astrophys. J. 552, 321 (2001).

    Article  ADS  Google Scholar 

  9. A. G. Lyne, R. S. Pritchard, and F. G. Smith, Mon. Not. R. Astron. Soc. 233, 667 (1988).

    ADS  Google Scholar 

  10. A. G. Lyne, R. S. Pritchard, and F. G. Smith, Mon. Not. R. Astron. Soc. 265, 1003 (1993).

    ADS  Google Scholar 

  11. T. V. Shabanova, Usp. Fiz. Nauk 164, 662 (1994) [Phys. Usp. 37, 618 (1994)].

    Article  Google Scholar 

  12. A. E. Chukwude, A. A. Ubachukwu, and P. N. Okeke, Astron. Astrophys. 399, 231 (2003).

    Article  ADS  Google Scholar 

  13. A. A. Deshpande and P. M. McCulloch, in Pulsars: Problems and Progress, Astron. Soc. Pac. Conf. Ser. 105, 101 (1996).

    ADS  Google Scholar 

  14. N. I. Shakura, K. A. Postnov, and M. E. Prokhorov, Astron. Astrophys. 331, L37 (1998).

    ADS  Google Scholar 

  15. M. Demiacski and M. Proszycski, Nature 282, 383 (1979).

    Article  ADS  Google Scholar 

  16. A. Wolszczan, in Planets Beyond the Solar System, Astron. Soc. Pac. Conf. Ser. 119, 135 (1996).

    Google Scholar 

  17. A. Wolszczan and D. A. Frail, Nature 355, 145 (1992).

    Article  ADS  Google Scholar 

  18. P. Haensel, in Astrophysical Sources of Gravitational Radiation (Cambridge Univ. Press, Cambridge, 1997), p. 129.

    Google Scholar 

  19. A. Čadež, S. Vidrih, M. Galičič, and A. Carramiñana, Astron. Astrophys. 366, 930 (2001).

    Article  Google Scholar 

  20. T. V. Shabanova, Astrophys. J. 453, 779 (1995).

    Article  ADS  Google Scholar 

  21. K. Tkachenko, Zh. Éksp. Teor. Fiz. 23, 1049 (1966).

    Google Scholar 

  22. J. Shaham, Astrophys. J. 214, 251 (1977).

    Article  ADS  Google Scholar 

  23. M. Ruderman, Nature 225, 838 (1970).

    Article  ADS  Google Scholar 

  24. G. S. Bisnovatyi-Kogan, G. A. Mersov, and E. K. Sheffer, Astron. Astrophys. 221, L7 (1989).

    ADS  Google Scholar 

  25. G. S. Bisnovatyi-Kogan and P. Kahabka, Astron. Astrophys. 267, L43 (1993).

    ADS  Google Scholar 

  26. V. P. Pandharipande, D. Pines, and R. A. Smith, Astrophys. J. 208, 550 (1976).

    Article  ADS  Google Scholar 

  27. P. Goldreich and S. Tremaine, Astrophys. J. 233, 857 (1979).

    Article  MathSciNet  ADS  Google Scholar 

  28. K. Lambeck, The Earth’s Variable Rotation: Geophysical Causes and Consequences (Cambridge Univ. Press, Cambridge, 1980).

    Book  Google Scholar 

  29. T. Van Hoolst, V. Dehant, and P. Defraigne, Phys. Earth Planet. Inter. 117, 397 (2000).

    Article  ADS  Google Scholar 

  30. A. Gusev, N. Kawano, and N. Petrova, in Near-Earth Astronomy—2005, Ed. by Yu. A. Nefed’ev, L. V. Rykhlova, M. A. Smirnov, and E. S. Bakanas (Kazan. Gos. Univ., Kazan, 2005), p. 343.

    Google Scholar 

  31. J. Getino, Geophys. J. Int. 120, 693 (1995).

    Article  ADS  Google Scholar 

  32. Y. Kubo, Celest. Mech. 19, 215 (1979).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  33. A-B. Gonzalez and J. Getino, Celest. Mech. Dyn. Astron. 68, 139 (1997).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  34. A. Gusev and I. Kitiashvili, Georesources 9, 41 (2005).

    Google Scholar 

  35. S. L. Shapiro and S. A. Teukolsky, Black Holes, White Dwarfs, and Neutron Stars: the Physics of Compact Objects (Wiley, New York, 1983; Mir, Moscow, 1985).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © I.N. Kitiashvili, A.V. Gusev, 2008, published in Astronomicheskiĭ Zhurnal, 2008, Vol. 85, No. 1, pp. 69–78.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kitiashvili, I.N., Gusev, A.V. Long-period variations of pulsar emission and the dynamical ellipticity of neutron stars. Astron. Rep. 52, 61–69 (2008). https://doi.org/10.1134/S1063772908010071

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772908010071

PACS numbers

Navigation