Skip to main content
Log in

Analysis of stellar trajectories in an open cluster model

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

A two-point model of an unisolated star cluster moving in a circular orbit in the Galactic plane is analyzed. The equations of stellar motion are linearized in the neighborhood of the singular point at the zero-velocity surface (ZVS), and also in the neighborhood of a point below the critical ZVS on a trajectory with less than the critical stellar ‘energy.’ We find the eigenvalues and eigenvectors of these equations and point out the instability of the two singular points on the critical ZVS; the separatrix connecting these points is determined numerically. For trajectories located below the critical ZVS, the absolute values of the eigenvalues of the linearized equations of motion increase with decreasing energy of the star and decreasing maximum distance between the trajectory and the cluster center of mass. This results in an increase of the numerical estimates of the maximum characteristic Lyapunov exponents for trajectories located closer to the center of mass of the cluster. We use Poincaré sections and the maximum characteristic Lyapunov exponents to analyze the properties of the stellar trajectories. A number of periodic orbits for different stellar energies are found, and the properties of the trajectories in the vicinity of these periodic orbits analyzed. Almost all the stellar trajectories considered are stochastic, with the degree of stochasticity increasing with decreasing stellar energy. Domains with different degrees of stochasticity are identified in the Poincaré maps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. M. Danilov and E. V. Leskov, Astron. Zh. 82, 219 (2005) [Astron. Rep. 49, 190 (2005)].

    Google Scholar 

  2. V. M. Danilov, Astron. Zh. 82, 678 (2005) [Astron. Rep. 49, 604 (2005)].

    Google Scholar 

  3. B. J. Bok, Harvard Obs. Circ. 384, 1 (1934).

    ADS  Google Scholar 

  4. H. Mineur, Ann. Astropys. 2, 1 (1939).

    ADS  Google Scholar 

  5. V. M. Danilov, Astron. Zh. 83, 393 (2006) [Astron. Rep. 50, 346 (2006)].

    Google Scholar 

  6. V. M. Danilov and L. V. Dorogavtseva, Astron. Zh. 80, 526 (2003) [Astron. Rep. 47, 483 (2003)].

    Google Scholar 

  7. M. Gidea and J. J. Masdemont, http://www.mal.upc.edu/recerca/reportstre/02/rep0203ma...

  8. L. V. Vela-Arevalo and J. E. Marsden, Class. Quant. Grav. 21, 351 (2004).

    Article  MathSciNet  ADS  Google Scholar 

  9. O. C. Winter and E. Viera Neto, Astron. Astrophys. 377, 1119 (2001).

    Article  ADS  Google Scholar 

  10. M. E. Paskowitz and D. J. Scheeres, J. Guid., Control Dyn. 29, 342 (2006).

    Article  Google Scholar 

  11. S. Chandrasekar, Principles of Stellar Dynamics (Univ. Chicago, Chicago, 1942; Inostr. lit-ra, Moscow, 1948).

    Google Scholar 

  12. I. R. King, An Introduction to Classical Stellar Dynamics (Berkeley, 1994; URSS, Moscow, 2002).

  13. L. Spitzer, Jr., Dynamical Evolution of Globular Clusters (Princeton Univ. Press, Princeton, 1987; Mir, Moscow, 1990).

    Google Scholar 

  14. G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers (McGraw-Hill, New York, 1961; Nauka, Moscow, 1968).

    MATH  Google Scholar 

  15. S. A. Kutuzov and L. P. Ossipkov, Astron. Zh. 57, 28 (1980) [Sov. Astron. 24, 17 (1980)].

    MATH  ADS  Google Scholar 

  16. A. P. Markeev, Libration Points in Celestial Mechanics and Cosmic Dynamics (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  17. V. V. Nemytskii and V. V. Stepanov, Qualitative Theory of Differential Equations (Gostekhizdat, Moscow, 1947; Princeton Univ. Press, Princeton, N.J., 1960).

    Google Scholar 

  18. G. J. Contopoulos, Order and Chaos in Dynamical Astronomy (Springer, Berlin, 2002).

    MATH  Google Scholar 

  19. F. R. Gantmacher, The Theory of Matrices (Nauka, Moscow, 1966; Chelsea, New York, 1959).

    Google Scholar 

  20. A. Yu. Loskutov and A. S. Mikhailov, An Introduction to Synergetics (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  21. V. A. Yakubovich and V. M. Starzhinskii, Lineinye differentsial’nye uravneniya i ikh prilozheniya (Linear Differential Equations and their Applications) (Nauka, Moscow, 1972) [in Russian].

    Google Scholar 

  22. B. P. Demidovich, Lektsii po matematicheskoi teorii ustoichivosti (Lectures on Mathematical Theory of Stability) (Nauka, Moscow, 1967) [in Russian].

    MATH  Google Scholar 

  23. A. J. Lichtenberg and M. A. Lieberman, Regular and Stochastic Motion (Springer, New York, 1982; Mir, Moscow, 1984).

    Google Scholar 

  24. R. Wielen, Astrophys. Space Sci. 13, 300 (1971).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.M. Danilov, O.A. Chernova, 2008, published in Astronomicheskiĭ Zhurnal, 2008, Vol. 85, No. 1, pp. 32–45.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Danilov, V.M., Chernova, O.A. Analysis of stellar trajectories in an open cluster model. Astron. Rep. 52, 27–39 (2008). https://doi.org/10.1134/S1063772908010046

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772908010046

PACS numbers

Navigation