Skip to main content
Log in

Dynamical evolution of galaxy clusters in the framework of the N-body problem. The formation of supermassive cD galaxies

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

We have carried out numerical simulations of the dynamical evolution of galaxy clusters taking into account merging when the relative velocities of the colliding galaxies are low. In particular, we study the evolution of the structure, mass spectrum, and velocity spectrum of a cluster of a thousand galaxies, as well as the growth of the central supermassive cD galaxy. The initial velocity dispersion of the galaxies and the rotation of the cluster were taken into account. The observed logarithmic spectrum dN\(\tfrac{{dM}}{M}\) was adopted as the initial mass spectrum. The dynamical evolution of galaxy clusters, allowing for the possible merging of colliding galaxies, results in the emergence of a central supermassive galaxy, whose mass continuously increases due to mergers. This occurs only if the mass of the central galaxy becomes greater than ∼0.1 of the total mass of the cluster. The observation of cD galaxies with relative masses of ∼0.01 suggests that they initially formed in the cluster core, merged with nearby galaxies, and accreted intergalactic gas. The model indicates that a logarithmic galaxy mass spectrum is preserved during the cluster evolution, despite the substantial decrease in the number of galaxies in the cluster with time. The model can also reproduce the observed mass distribution with distance from the cluster center, M r r 1.7.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Gallagher and J. Ostriker, Astron. J. 77, 288 (1972).

    Article  ADS  Google Scholar 

  2. A. Garijo, G. Athanassoula, and C. Garcia-Comez, Astron. Astrophys. 327, 930 (1997).

    ADS  Google Scholar 

  3. R. Piffaretti and J. Kaastra, astro-ph/0602376 (2006).

  4. W. Oegerle and J. Hill, Astron. J. 122, 2858 (2001).

    Article  ADS  Google Scholar 

  5. B. Poggianti, astro-ph/0503212 (2005).

  6. E. Egami, K. Misselt, G. Rieke, et al., astro-ph/0603656 (2006).

  7. A. Hicks and R. Mushotzky, Astrophys. J. 635, L9 (2005).

    Article  ADS  Google Scholar 

  8. B. Lanzoni, B. Guiderdoni, G. Mamon, et al., Mon. Not. R. Astron. Soc. 361, 369 (2005).

    Article  ADS  Google Scholar 

  9. M. Nagashima, H. Yahagi, M. Enoki, et al., astro-ph/0508085 (2005).

  10. W. Oegerle and J. Hill, Astron. J. 122, 2858 (2001).

    Article  ADS  Google Scholar 

  11. A. Toomre and J. Toomre, Astrophys. J. 178, 623 (1972).

    Article  ADS  Google Scholar 

  12. A. Gonzalez-Garcia and T. van Albada, astro-ph/0506014, 0506015 (2005).

  13. J. Barnes and L. Hernguist, Astrophys. J. 471, 115 (1996).

    Article  ADS  Google Scholar 

  14. K. Tran, P. van Dokkum, and M. Franx, et al., Astrophys. J. 627, L13 (2005).

    Article  Google Scholar 

  15. C. Couselice, astro-ph/0507146 (2005).

  16. J. Melbourne, S. Wright, M. Barczys, et al., Astrophys. J. 625, L27 (2005).

    Article  ADS  Google Scholar 

  17. Y. Yamada, N. Arimoto, A. Vazdekis, et al., astro-ph/0511122 (2005).

  18. P. Hopkins, L. Hernquist, T. Cox, et al., astro-ph/0506398 (2005).

  19. D. Mast, R. Diaz, and M. Paz Aguero, astro-ph/0505264 (2005).

  20. A. Subramanian and T. Prabhu, Astrophys. J. 625, L47 (2005).

    Article  ADS  Google Scholar 

  21. M. Geha, P. Guhathakurta, and R. van der. Marel, Astron. J. 129, 2617 (2005).

    Article  ADS  Google Scholar 

  22. R. Wyse, G. Dilmore, J. Morris, et al., Astrophys. J. 639, L13 (2006).

    Article  ADS  Google Scholar 

  23. T. Lisker, E. Grebel, and B. Binggeli, astro-ph/0604216 (2006).

  24. A. V. Tutukov and A. V. Fedorova, Astron. Rep. 50, 785 (2006).

    Article  ADS  Google Scholar 

  25. G. Lonsdale, D. Farrah, and H. Smith, astro-ph/0603031 (2006).

  26. D. Wiebe, B. Shustov, and A. Tutukov, Astron. Astrophys. 345, 93 (1999).

    ADS  Google Scholar 

  27. A. V. Tutukov, Astron. Rep. 50, 439 (2006).

    Article  ADS  Google Scholar 

  28. N. Bachall and R. Cen, Astrophys. J. 407, L49 (1993).

    Article  ADS  Google Scholar 

  29. A. Biriano, M. Girardi, G. Mardirossian, et al., Astrophys. J. 411, L.73 (1993).

    Google Scholar 

  30. M. Girardi, S. Borgani, G. Giuricin, et al., Astrophys. J. 506, 45 (1998).

    Article  ADS  Google Scholar 

  31. G. Voit, astro-ph/0410173 (2004).

  32. D. Farrah, C. Lonsdale, C. Boris, et al., Astrophys. J. 641, L17 (2006).

    Article  ADS  Google Scholar 

  33. E. Pointecontean, M. Arnaud, and G. Pratt, Astron. Astrophys. 435, L1 (2005).

    Article  ADS  Google Scholar 

  34. L. Voigt and A. Fabian, astro-ph/0602373 (2006).

  35. M. Kalinkov, T. Valchanov, I. Valchanov, et al., astro-ph/0505091 (2005).

  36. K. Blinder, H. Yee, M. Gladdler, et al., astro-ph/0404314 (2004).

  37. Y. Lin and J. Mohr, Astrophys. J. 617, 879 (2004).

    Article  ADS  Google Scholar 

  38. Y. Lin and J. Mohr, Astrophys. J. 617, 879 (2004).

    Article  ADS  Google Scholar 

  39. S. Driver, J. Liske, and N. Gross, astro-ph/0503228 (2005).

  40. T. Goto, astro-ph/0503089 (2005).

  41. I. Karachentsev, V. Karachentsev, W. Huchtmeieret, et al., Astron. J. 127, 2068 (2004).

    Article  Google Scholar 

  42. J. Falcon-Barraso, R. Peleties, E. Emsellem, et al., Mon. Not. R. Astron. Soc. 350, 35 (2004).

    Article  ADS  Google Scholar 

  43. A. Tutukov, Astron. Zh. 82, 17 (2005) [Astron. Rep. 49, 13 (2005)].

    Google Scholar 

  44. P. Hopkins, L. Hernquist, T. Cox, et al., astro-ph/0508299 (2005).

  45. J. Hennawy, M. Strauss, M. Oguri, et al., astro-ph/0504535 (2005).

  46. A. Mercurio, P. Merluzzi, C. P. Haines, et al., astro-ph/0512475 (2005).

  47. L. Verlet and J. J. Weis, Phys. Rev. A 5, 939 (1972).

    Article  ADS  Google Scholar 

  48. C. Nipoli, M. Stiavelli, L. Ciotti, et al., Mon. Not. R. Astron. Soc. 344, 748 (2003).

    Article  ADS  Google Scholar 

  49. Hennawi, M. Strauss, M. Oguri, et al., Astron. J. 131, 1 (2006).

    Article  ADS  Google Scholar 

  50. C. Warner, F. Haman, and M. Dietrich, Astrophys. J. 596, 72 (2003).

    Article  ADS  Google Scholar 

  51. R. McLure, M. Cirasuolo, J. Dunlop, et al., astro-ph/0606116 (2006).

  52. A. Quintero, A. Berlind, M. Blanton, et al., astro-ph/0512004 (2005).

  53. W. Zheng, R. Overzier, R. Bouwens, et al., Astrophys. J. 640, 574 (2006).

    Article  ADS  Google Scholar 

  54. J. Dunlop, M. Cirasuolo, and R. McLure, astro-ph/0606193 (2006).

  55. J. Feldmeier, astro-ph/0606173 (2006).

  56. M. Cappellari, R. Bacon, M. Bureau, et al., Mon. Not. R. Astron. Soc. 366, 1126 (2006).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A. V. Tutukov, V. V. Dryomov, G. N. Dryomova, 2007, published in Astronomicheskiĭ Zhurnal, 2007, Vol. 84, No. 6, pp. 487–502.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tutukov, A.V., Dryomov, V.V. & Dryomova, G.N. Dynamical evolution of galaxy clusters in the framework of the N-body problem. The formation of supermassive cD galaxies. Astron. Rep. 51, 435–449 (2007). https://doi.org/10.1134/S1063772907060029

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772907060029

PACS numbers

Navigation