Skip to main content
Log in

Generation of solar magnetic fields by the αδΘ dynamo

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

We consider a solar dynamo mechanism that generates large-scale magnetic fields due to the combined action of cyclonic flows (the α effect), differential rotation (the Θ effect), and the non-uniformity of large-scale magnetic fields (the Θ × J effect). Our results are based on numerical model which takes into account currently available data on the differential rotation of the convection zone and the intensity of convective flows in the solar interior. A reasonable choice of parameters characterizing the intensity of magnetic-field generation by the α and Θ × J mechanisms can account for an oscillatory dynamo regime with properties similar to the 22-year magnetic-activity cycle of the Sun. We analyze the nonlinear saturation of the generation effects in the large-scale magnetic field, due to either magnetic stresses or the conservation of magnetic helicity. Allowance for the helicity of the small-scale magnetic fields is of crucial importance in limiting the energy of the generated large-scale magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Krause and K.-H. Raedler, Mean-Field Magnetohydrodynamics and Dynamo Theory (Akademie-Verlag, Berlin, 1980; Mir, Moscow, 1984).

    MATH  Google Scholar 

  2. E. N. Parker, Magnetic Field Generation in Electrically Conducting Fluid (Clarendon, Oxford, 1979).

    Google Scholar 

  3. A. Brandenburg and K. Subramanian, Phys. Rep. 417, 1 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  4. M. Ossendrijver, Astron. Astrophys. Rev. 11, 287 (2003).

    Article  ADS  Google Scholar 

  5. H. K. Moffat and M. R. E. Proctor, J. Fluid Mech. 154, 493 (1985).

    Article  ADS  Google Scholar 

  6. K.-H. Raedler, Monatsber. Dtsch. Akad. Wiss. Berlin 11, 194 (1969).

    Google Scholar 

  7. K.-H. Rädler, N. Kleeorin, and I. Rogachevskii, Geophys. Astrophys. Fluid Dyn. 97, 249 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  8. M. Stix, Astron. Astrophys. 47, 243 (1976).

    ADS  Google Scholar 

  9. V. V. Pipin, Geophys. Astrophys. Fluid Dyn. 101 (2007) (in press).

  10. M. Stix, The Sun. An Introduction (Springer, 2002).

  11. G. Belvedere, K. M. Kuzanyan, and D. D. Sokoloff, Mon. Not. R. Astron. Soc. 315, 778 (2000).

    Article  ADS  Google Scholar 

  12. N. Kleeorin, K. Kuzanyan, D. Moss, et al., Astron. Astrophys. 409, 1097 (2003).

    Article  ADS  Google Scholar 

  13. A. Brandenburg and K. Subramanian, Astron. Nachr. 325, 400 (2004).

    Google Scholar 

  14. V. N. Obridko, D. D. Sokoloff, K. M. Kuzanyan, et al., Mon. Not. R. Astron. Soc. 365, 827 (2006).

    Article  ADS  Google Scholar 

  15. K. M. Kuzanyan, V. V. Pipin, and N. Seehafer, Sol. Phys. 233, 185 (2006).

    Article  ADS  Google Scholar 

  16. Kh. Shang, S. Bao, and K. M. Kuzanyan, Astron. Rep. 46, 424 (2002).

    Article  ADS  Google Scholar 

  17. L. L. Kichatinov and V. V. Pipin, Astron. Astrophys. 274, 647 (1993).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.V. Pipin, 2007, published in Astronomicheskiĭ Zhurnal, 2007, Vol. 84, No. 5, pp. 461–470.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pipin, V.V. Generation of solar magnetic fields by the αδΘ dynamo. Astron. Rep. 51, 411–420 (2007). https://doi.org/10.1134/S1063772907050071

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772907050071

PACS numbers

Navigation