Skip to main content
Log in

Late stages of the evolution of close compact binaries: Type I supernovae, gamma-ray bursts, and supersoft X-ray sources

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

We consider the evolution of close binaries resulting in the most intensive explosive phenomena in the stellar Universe—Type Ia supernovae and gamma-ray bursts. For Type Ia supernovae, which represent thermonuclear explosions of carbon-oxygen dwarfs whose masses reach the Chandrasekhar limit during the accretion of matter from the donor star, we derive the conditions for the accumulation of the limiting mass by the degenerate dwarf in the close binary. Accretion onto the degenerate dwarf can be accompanied by supersoft X-ray radiation with luminosity 1–104 L . Gamma-ray bursts are believe to accompany the formation and rapid evolution of compact accretion-decretion disks during the formation of relativistic objects—black holes and neutron stars. The rapid (∼1 M /s) accretion of matter from these disks onto the central compact relativistic star results in an energy release of ∼0.1 M c 2 ∼ 1053 erg in the form of gamma-rays and neutrinos over a time of 0.1–1000 s. Such disks can form via the collapse of the rapidly rotating cores of Type Ib, Ic supernovae, which are components in extremely close binaries, or alternately due to the collapse of accreting oxygen-neon degenerate dwarfs with the Chandrasekhar mass into neutron stars, or the merging of neutron stars with neutron stars or black holes in close binaries. We present numerical models of the evolution of some close binaries that result in Type Ia supernovae, and also estimate the rates of these supernovae (∼0.003/year) and of gamma-ray bursts (∼10−4/year) in our Galaxy for various evolutionary scenarios. The collimation of the gamma-ray burst radiation within an opening angle of several degrees “matches” the latter estimate with the observed rate of these events, ∼10−7–10−8/year calculated for a galaxy with the mass of our Galaxy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Tutukov, Astron. Zh. 80, 692 (2003) [Astron. Rep. 47, 637 (2003)].

    Google Scholar 

  2. C. Firmani, V. Avila-Reese, and A. Tutukov, Astrophys. J. 611, 1033 (2004).

    Article  ADS  Google Scholar 

  3. A. Fillipenko, Lect. Notes Phys. 646, 191 (2004).

    ADS  Google Scholar 

  4. S. Perlmutter, Phys. Scr. 117, 17 (2005).

    Article  Google Scholar 

  5. B. Paczynski, Astrophys. J. 494, L45 (1998).

    Article  ADS  Google Scholar 

  6. I. Iben and A. Tutukov, Astrophys. J., Suppl. Ser. 54, 335 (1984).

    Article  ADS  Google Scholar 

  7. A. V. Tutukov and A. M. Cherepashchuk, Astron. Zh. 80, 419 (2003) [Astron. Rep. 47, 386 (2003)].

    Google Scholar 

  8. A. Tutukov and L. Yungelson, Mon. Not. R. Astron. Soc. 268, 871 (1994).

    ADS  Google Scholar 

  9. E. Scannapieco and L. Bildstein, Astrophys. J. 629, L85 (2005).

    Article  ADS  Google Scholar 

  10. M. Sullivan, D. LeBorgne, C. Pritchet, et al., astro-ph/0605455 (2005).

  11. T. Dahlen, L. Strolger, and A. Riess, Astrophys. J. 613, 189 (2004).

    Article  ADS  Google Scholar 

  12. B. Barris and J. Tonry, Astrophys. J. 637, 427 (2006).

    Article  ADS  Google Scholar 

  13. M. Della Valle, N. Panagia, P. Padovani, et al., Astrophys. J. 629, 750 (2005).

    Article  ADS  Google Scholar 

  14. X. Wang, L. Wang, R. Pain, et al., astro-ph/0603392 (2006).

  15. S. Hachinger, P. Mazzali, and S. Benetti, astro-ph/0604472 (2006).

  16. M. Stritzinger, B. Leibungut, S. Walch, et al., Astron. Astrophys. 450, 241 (2006).

    Article  ADS  Google Scholar 

  17. S. Blinnikov, F. Ropke, E. Sorokina, et al., astro-ph/0603036 (2006).

  18. T. Shanks, P. Allen, F. Hoyle, et al., in A New Era in Cosmology, Ed. by N. Metcalfe and T. Shanks (Astron. Soc. Pac., San Francisco, 2002), Astron. Soc. Pac. Conf. Ser. 283, 274 (2002).

    Google Scholar 

  19. S. Benetti, E. Cappellaro, P. Mazzali, et al., Astrophys. J. 623, 1011 (2005).

    Article  ADS  Google Scholar 

  20. A. Borowiec, W. Godlowski, and M. Szydlowski, astro-ph/0602526 (2006).

  21. V. Usov and G. Chibisov, Astron. J. 131, 2332 (2006).

    Article  Google Scholar 

  22. E. Mazets, in Proceedings of the 19th Cosmic Ray Conference, Washington, 1986, Ed. by F. Jonas et al., p. 424.

  23. A. Tutukov and N. Chugaĭ, Pis’ma Astron. Zh. 18, 605 (1992) [Sov. Astron. Lett. 18, 242 (1992)].

    ADS  Google Scholar 

  24. B. Paczynski, Astrophys. J. 308, L43 (1986).

    Article  ADS  Google Scholar 

  25. G. Cincarini, F. Flore, M. Della Valle, et al., Messenger 12, 54 (2006).

    ADS  Google Scholar 

  26. G. Grindlay, astro-ph/0605112 (2006).

  27. C. Firmani, V. Avila-Reese, A. Tutukov, et al., Nuovo Cimento C 28, 665 (2005).

    ADS  Google Scholar 

  28. C. Firmani, G. Chisellini, V. Avila-Reese, et al., astro-ph/0605073 (2006).

  29. A. V. Tutukov and Ya. N. Pavlyuchenkov, Astron. Zh. 81, 881 (2004) [Astron. Rep. 48, 800 (2004)].

    Google Scholar 

  30. M. Shibata and K. Taniguchi, astro-ph/0603145 (2006).

  31. D. Burrows, P. Romano, A. Falkone, et al., Science 309, 1833 (2005).

    Article  ADS  Google Scholar 

  32. A. Panaitescu, Mon. Not. R. Astron. Soc. 362, 921 (2005).

    Article  ADS  Google Scholar 

  33. J. Greiner, S. Close, M. Salvato, et al., Astrophys. J. 599, 1223 (2003).

    Article  ADS  Google Scholar 

  34. N. Vlahakis and A. Königl, Astrophys. J. 596, 104 (2003).

    ADS  Google Scholar 

  35. L. Gurevich and A. Lebedinskii, Vestn. Leningrad. Univ., No. 4–5, 53 (1946).

  36. F. Hoyle and W. Fowler, Astrophys. J. 132, 565 (1960).

    Article  ADS  Google Scholar 

  37. I. Iben and A. Tutukov, Astrophys. J., Suppl. Ser. 58, 661 (1985).

    Article  ADS  Google Scholar 

  38. P. Gil-Pons and E. Garcia-Berro, Astron. Astrophys. 375, 87 (2001).

    Article  ADS  Google Scholar 

  39. R. Martin and C. Tout, astro-ph/0609192 (2006).

  40. L. Ivanova, V. Imshennik, and V. Chechetkin, Astrophys. Space Sci. 31, 477 (1974).

    Article  ADS  Google Scholar 

  41. B. Smalley, K. Smith, C. Wonnacott, et al., Mon. Not. R. Astron. Soc. 278, 688 (1966).

    ADS  Google Scholar 

  42. L. Dessart, A. Burrows, C. Ott, et al., astro-ph/0601603 (2006).

  43. F. Kitaura, H. Janka, and W. Hillrbrandt, Astron. Astrophys. 450, 345 (2006).

    Article  ADS  Google Scholar 

  44. L. Ivanova and V. Chechetkin, Astron. Zh. 58, 1028 (1981) [Sov. Astron. 25, 584 (1981)].

    ADS  Google Scholar 

  45. A. Kuranov and K. Postnov, astro-ph/0604115 (2006).

  46. P. Lundqvist, S. Mattila, J. Sollerman, et al., astro-ph/0309006 (2003).

  47. B. Paczynski, Acta Astron. 20, 47 (1970).

    ADS  Google Scholar 

  48. I. Iben and A. Tutukov, Astrophys. J. 342, 430 (1989).

    Article  ADS  Google Scholar 

  49. A. Piro and L. Bildstein, Astrophys. J. 610, 977 (2004).

    Article  ADS  Google Scholar 

  50. I. Hachisu and M. Kato, astro-ph/0602563 (2006).

  51. K. McCowan, Ph. Charles, A. Blustin, et al., Mon. Not. R. Astron. Soc. 364, 462 (2005).

    ADS  Google Scholar 

  52. É. Mustel’ and A. Boyarchuk, Astron. Zh. 36, 762 (1959) [Sov. Astron. 3, 744 (1959)].

    ADS  Google Scholar 

  53. I. Iben and A. Renzini, Astron. Astrophys. 21, 271 (1983).

    Article  ADS  Google Scholar 

  54. A. G. Masevich and A. V. Tutukov, Evolution of Stars: Theory and Observations (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  55. H. Kobulnicky, C. Fryer, and D. Kiminski, astro-ph/0605069 (2006).

  56. T. Mazeh, Astrophys. J. 599, 1254 (2002).

    Google Scholar 

  57. M. Pinsonneault and K. Stanek. Astrophys. J. 639, L67 (2006).

    Article  ADS  Google Scholar 

  58. A. Tutukov and L. Yungel’son, Astron. Zh. 79, 738 (2002) [Astron. Rep. 46, 667 (2002)].

    Google Scholar 

  59. A. Tutukov and L. Yungelson, Astron. Rep. 46, 667 (2002).

    Article  ADS  Google Scholar 

  60. P. Hakala, A. Ramsay, K. Wu, et al., Mon. Not. R. Astron. Soc. 343, L10 (2003).

    Article  ADS  Google Scholar 

  61. ??P. Would and B. Warner, in White Dwarfs: Galactic and Cosmological Probes, Ed. by E. Sion; astro-ph/0310494 (2003).

  62. V. Stanishev, R. Zamanov, and N. Tomov, Astron. Astrophys. 415, 609 (2004).

    Article  ADS  Google Scholar 

  63. J. Dupuis, P. Chayer, S. Vennes, et al., Astrophys. J. 598, 486 (2003).

    Article  ADS  Google Scholar 

  64. M. Kato and I. Hachisu, Astrophys. J. 598, L107 (2003).

    Article  ADS  Google Scholar 

  65. G. Nelemans, R. Napiwotzki, C. Karl, et al., Astron. Astrophys. 440, 1087 (2005).

    Article  ADS  Google Scholar 

  66. P. Dobbie, R. Napiwotzki, M. Burleigh, et al., astro-ph/0603314 (2006).

  67. A. Tutukov and L. Yungelson, Astrofizika 12, 512 (1976) [Astrophys. 12, 342 (1976)].

    ADS  Google Scholar 

  68. J. Wheelan and I. Iben, Astrophys. J. 186, 1007 (1973).

    Article  ADS  Google Scholar 

  69. G. Aldering, P. Antilogus, S. Bailey, et al., astro-ph/0606499 (2006).

  70. J. Deng, K. Kawabata, and Y. Ohyama, Astrophys. J. 605, L37 (2004).

    Article  ADS  Google Scholar 

  71. S. Immler, P. Brown, and P. Milneebal, astro-ph/0607620 (2006).

  72. I. Iben and A. Tutukov, Astrophys. J. 284, 719 (1984).

    Article  ADS  Google Scholar 

  73. F. Camilo and F. Rasio, in Binary Radio Pulsars, Ed. by F. Rasio (Astron. Soc. Pac., San Francisco, 2005), Astron. Soc. Pac. Conf. Ser. 328, 147 (2005).

    Google Scholar 

  74. I. Iben, A. Tutukov and A. Fedorova, Astrophys. J. 486, 955 (1997).

    Article  ADS  Google Scholar 

  75. A. V. Tutukov and A. V. Fedorova, Astron. Zh. 79, 847 (2002) [Astron. Rep. 46, 765 (2002)].

    Google Scholar 

  76. K. Nomoto and D. Sugimoto, Publ. Astron. Soc. Jpn. 29, 765 (1997).

    ADS  Google Scholar 

  77. I. Iben, K. Nomoto, A. Tornambe, et al., Astrophys. J. 317, 717 (1987).

    Article  ADS  Google Scholar 

  78. A. V. Tutukov and A. V. Fedorova, Astron. Zh. 66, 1172 (1989) [Sov. Astron. 33, 606 (1989)].

    ADS  Google Scholar 

  79. S. Yoon and N. Langer, Astron. Astrophys. 412, L53 (2004).

    Article  ADS  Google Scholar 

  80. A. Oliveira, J. Steiner and D. Cieslinski, Mon. Not. R. Astron. Soc. 346, 963 (2003).

    Article  ADS  Google Scholar 

  81. I. Iben, K. Nomoto, and A. Tutukov, Astrophys. J. 317, 717 (1987).

    Article  ADS  Google Scholar 

  82. I. Iben and A. Tutukov, Astrophys. J. 282, 615 (1984).

    Article  ADS  Google Scholar 

  83. I. Iben and A. Tutukov, Astrophys. J. 370, 615 (1991).

    Article  ADS  Google Scholar 

  84. A. Bianchini, F. Tamburini, and P. Johnson, astro-ph/0602157 (2006).

  85. A. V. Tutukov, A. V. Fedorova, E. V. Ergma, and L. R. Yungel’son, Pis’ma Astron. Zh. 11, 123 (1985) [Sov. Astron. Lett. 11, 52 (1985)].

    ADS  Google Scholar 

  86. A. V. Tutukov, A. V. Fedorova, E. V. Ergma, and L. R. Yungel’son, Astrofizika 24, 85 (1986) [Astrophys. 24, 51 (1986)].

    ADS  Google Scholar 

  87. F. D’Antona, P. Ventura, L. Burderi, et al., astro-ph/0606577 (2006).

  88. V. Suleimanov and A. Ibragimov, astro-ph/0603430 (2006).

  89. T. Lanz, G. Telis, M. Andard, et al., Astrophys. J. 619, 517 (2004).

    Article  ADS  Google Scholar 

  90. P. Kahabka, in Compact X-Ray Sources, Ed. by W. Lewin and M. van der Klis (Cambridge Univ. Press, Cambridge, 2002); astro-ph/0212037 (2002).

    Google Scholar 

  91. R. Di Stefano and A. Kong, Astrophys. J. 592, 884 (2003).

    Article  ADS  Google Scholar 

  92. R. Di Stefano and S. Rappaport, Astrophys. J. 437, 733 (1994).

    Article  ADS  Google Scholar 

  93. M. Orio, Astrophys. J. 643, 844 (2006).

    Article  ADS  Google Scholar 

  94. L. Piersanti, S. Gasliardi, and I. Iben, Astrophys. J. 598, 1229 (2003).

    Article  ADS  Google Scholar 

  95. K. Werner, T. Ranch, R. Napiwotzki, et al., Astron. Astrophys. 424, 657 (2004).

    Article  ADS  Google Scholar 

  96. R. Di Stefano and A. Kong, Astrophys. J. 609, 710 (2004).

    Article  ADS  Google Scholar 

  97. S. Miyaji, K. Nomoto, K. Yokoi, et al., Publ. Astron. Soc. Jpn. 32, 303 (1980).

    ADS  Google Scholar 

  98. C. Ritosa, E. Garcia-Berro, and I. Iben, Astrophys. J. 515, 381 (1999).

    Article  ADS  Google Scholar 

  99. A. Bogomazov, M. Abubekirov, V. Lipunov, and A. Cherepashchuk, Astron. Zh. 82, 331 (2005) [Astron. Rep. 49, 295 (2005)].

    Google Scholar 

  100. G. Lavagetto, L. Burderi, and F. D’Antona, Mon. Not. R. Astron. Soc. 348, L73 (2003).

    Article  Google Scholar 

  101. S. Yoon, N. Langer, and C. Norman, astro-ph/0606637 (2006).

  102. A. V. Tutukov, Astron. Zh. 82, 616 (2005) [Astron. Rep. 49, 548 (2005)].

    Google Scholar 

  103. A. Bogomazov, V. Lipunov, and A. Tutukov, Mon. Not. R. Astron. Soc. (2006) (in press).

  104. M. Della Valle, astro-ph/0604110 (2006).

  105. K. Postnov and A. Cherepashchuk, Astron. Zh. 78, 602 (2001) [Astron. Rep. 45, 517 (2001)].

    Google Scholar 

  106. L. Li, astro-ph/0605387 (2006).

  107. J. Eldridge, F. Genet, F. Daigne, et al., Mon. Not. R. Astron. Soc. 367, 186 (2006).

    Article  ADS  Google Scholar 

  108. T. Matsubayashi, R. Yamazaki, D. Yonetoke, et al., Prog. Theor. Phys. 114, 983 (2005).

    Article  MATH  ADS  Google Scholar 

  109. J. Cordes, M. Kramer, T. Lazio, et al., New Astron. Rev. 48, 1413 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.V. Tutukov, A.V. Fedorova, 2007, published in Astronomicheskiĭ Zhurnal, 2007, Vol. 84, No. 4, pp. 327–344.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tutukov, A.V., Fedorova, A.V. Late stages of the evolution of close compact binaries: Type I supernovae, gamma-ray bursts, and supersoft X-ray sources. Astron. Rep. 51, 291–307 (2007). https://doi.org/10.1134/S1063772907040051

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772907040051

PACS numbers

Navigation