Skip to main content
Log in

A spectral analysis of microlensing variability of quasars

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

A procedure for calculating two-dimensional power spectra of microlensing magnification fields is presented. In the absence of a shift, the one-dimensional projections of the power spectra P(k) corresponding to the light curve of a point source moving in a linear trajectory can be approximated by the expression (a 2 + k 2)−1/2 (where a = const). The power spectrum of an extended source is treated like the product of the power spectrum of a point source and the power spectrum of the brightness distribution of the extended source. The effect of the extent of the source is that it acts like a filter, suppressing high-frequency components in the spectrum. Based on eight years of monitoring of the quad gravitational lens Q2237+0305 by the OGLE group, power spectra for all four images are constructed and the (temporal) size of the radiating region of the quasar in the V filter is estimated to be 24 ± 6 days; given the constraints on the transverse velocity of the lensing galaxy (<600 km/s), the linear size turns out to be <1015 cm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Chang and S. Refsdal, Nature 282, 561 (1979).

    Article  ADS  Google Scholar 

  2. D. Walsh, R. F. Carswell, and R. J. Weymann, Nature 279, 381 (1979).

    Article  ADS  Google Scholar 

  3. M. J. Irwin, R. L. Webster, P. C. Hewett, et al., Astron. J. 98, 1989 (1989).

    Article  ADS  Google Scholar 

  4. F. Courbin, in Gravitational Lensing: An Astrophysical Tool, Ed. by F. Courbin and D. Minniti (Springer-Verlag, Berlin, 2002), Lect. Notes Phys. 608, 1 (2002).

    Google Scholar 

  5. V. N. Shalyapin, L. J. Goicoechea, D. Alcalde, et al., Astrophys. J. 579, 127 (2002).

    Article  ADS  Google Scholar 

  6. M. J. Mortonson, P. L. Schechter, and J. Wambsganss, Astrophys. J. 628, 594 (2005).

    Article  ADS  Google Scholar 

  7. J. Wambsganss, J. Comput. Appl. Math. 109, 353 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  8. V. N. Shalyapinxxx Pis’ma Astron. Zh. 27, 1 (2001) [Astron. Lett. 27, 150 (2001)].

    Google Scholar 

  9. A. Yonehara, Astrophys. J. 548, L127 (2001).

    Article  ADS  Google Scholar 

  10. C. S. Kochanek, Astrophys. J. 605, 58 (2004).

    Article  ADS  Google Scholar 

  11. Dong-Wook Lee, J. Surdej, O. Moreau, et al., Astron. Astrophys. 436, 479 (2005).

    Article  ADS  Google Scholar 

  12. C. Seitz and P. Schneider, Astron. Astrophys. 288, 1 (1994).

    MathSciNet  ADS  Google Scholar 

  13. C. Seitz, J. Wambsganss, and P. Schneider, Astron. Astrophys. 288, 19 (1994).

    ADS  Google Scholar 

  14. G. F. Lewis and M. J. Irwin, Mon. Not. R. Astron. Soc. 283, 225 (1996).

    ADS  Google Scholar 

  15. B. Neidorf, Astron. Astrophys. 404, 83 (2003).

    Article  ADS  Google Scholar 

  16. M. R. S. Hawkins, Astrophys. J. 553, L97 (2001).

    Article  ADS  Google Scholar 

  17. V. N. Shalyapinxxx Astron. Zh. 72, 668 (1995) [Astron. Rep. 39, 594 (1995)].

    ADS  Google Scholar 

  18. S. Deguchi and W. D. Watson, Phys. Rev. Lett. 59, 2814 (1987).

    Article  ADS  Google Scholar 

  19. A. Papoulis, Systems and Transforms with Applications in Optics (McGraw-Hill, New York, 1968; Mir, Moscow, 1971).

    Google Scholar 

  20. G. Arfken, Mathematical Methods for Physicists (Academic, New York, 1966; Atomizdat, Moscow, 1970).

    MATH  Google Scholar 

  21. R. Ostensen, S. Refsdal, R. Stabell, et al., Astron. Astrophys. 309, 59 (1996).

    ADS  Google Scholar 

  22. D. Alcade, E. Mediavilla, O. Moreau, et al., Astrophys. J. 572, 729 (2002).

    Article  ADS  Google Scholar 

  23. E. Koptelova, E. Shimanovskaya, B. Artamonov, et al., Mon. Not. R. Astron. Soc. 356, 323 (2005).

    Article  ADS  Google Scholar 

  24. P. R. Woźniak, C. Alard, A. Udalski, et al., Astrophys. J. 529, 88 (2000).

    Article  ADS  Google Scholar 

  25. N. R. Lomb, Astrophys. Space Sci. 39, 447 (1976).

    Article  ADS  Google Scholar 

  26. J. D. Scargle, Astrophys. J. 263, 835 (1982).

    Article  ADS  Google Scholar 

  27. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Wettering, Numerical Recipes (Cambridge Univ. Press, Cambridge, 1997).

    Google Scholar 

  28. G. M. Jenkins and D. G. Watts, Spectral Analysis and Its Applications (Holden-Day, San Francisco, 1966; Mir, Moscow, 1971), Vol. 1.

    MATH  Google Scholar 

  29. P. L. Schechter, J. Wambsganss, and G. F. Lewis, Astrophys. J. 613, 77 (2004).

    Article  ADS  Google Scholar 

  30. J. S. B. Wyithe, R. L. Webster, and E. L. Turner, Mon. Not. R. Astron. Soc. 309, 261 (1999).

    Article  ADS  Google Scholar 

  31. R. Gil-Merino, J. Wambsganss, L. Goicoechea, and G. Lewis, Astron. Astrophys. 432, 83 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.N. Shalyapin, 2006, published in Astronomicheskiĭ Zhurnal, 2006, Vol. 83, No. 9, pp. 784–793.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shalyapin, V.N. A spectral analysis of microlensing variability of quasars. Astron. Rep. 50, 699–707 (2006). https://doi.org/10.1134/S1063772906090034

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772906090034

PACS numbers

Navigation