Skip to main content
Log in

Possibilities for studying microlensing of distant quasars using the RADIOASTRON space interferometer

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

Gravitational lensing is a powerful tool for studies of the distribution of matter (including dark matter) in the Universe. The characteristic angular separation of images and characteristic variability time scale depend on the characteristic masses of the gravitational lenses. The construction of the RADIOASTRON space interferometer in the coming years will provide qualitatively new conditions for investigations of microlensing of distant quasars in the radio, since it will become possible not only to resolve individual microimages of these quasars, but also to observe astrometric microlensing (i.e., the shift of an image of a distant quasar, sometimes called weak microlensing). Astrometric microlensing by compact objects in the Galactic halo is not a very significant effect for the RADIOASTRON interferometer, since the probability of such events is low and the characteristic time scales involved appreciably exceed the proposed operational lifetime of the interferometer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Byalko, Astron. Zh. 46, 998 (1969) [Sov. Astron. 13, 784 (1969)].

    ADS  Google Scholar 

  2. C. Alcock, C. W. Akerloff, R. A. Allsman, et al., Nature 365, 621 (1993).

    Article  ADS  Google Scholar 

  3. E. Aubourg, P. Bareyre, S. Brehin, et al., Nature 365, 623 (1993).

    Article  ADS  Google Scholar 

  4. P. R. Wozniak, A. Udalski, M. Szymanski, et al., Acta Astron. 51, 175 (2001).

    ADS  Google Scholar 

  5. A. F. Zakharov, Gravitational Lenses and Microlenses (Yanus, Moscow, 1997) [in Russian].

    Google Scholar 

  6. A. F. Zakharov and M. V. Sazhin, Usp. Fiz. Nauk 168, 1041 (1998) [Phys. Usp. 41, 945 (1998)].

    Google Scholar 

  7. A. F. Zakharov, Publ. Astron. Obs. Belgrade 75, 27 (2003); astro-ph/0212009.

    ADS  Google Scholar 

  8. A. F. Zakharov, in Proceedings of the 11th Lomonosov Conference on Elementary Particle Physics, Ed. by A. I. Studenikin (World Sci., 2005), p. 106; astro-ph/0403619.

  9. J. R. Gott, Astrophys. J. 243, 140 (1981).

    Article  ADS  Google Scholar 

  10. M. J. Irwin, R. L. Webster, P. C. Hewett, et al., Astron. J. 98, 1989 (1989).

    Article  ADS  Google Scholar 

  11. A. F. Zakharov, L. C. Popovic, and P. Jovanovic, Astron. Astrophys. 420, 881 (2004).

    Article  ADS  Google Scholar 

  12. K. Chang and S. Refsdal, Nature 282, 561 (1979).

    Article  ADS  Google Scholar 

  13. J. Wambsganss, Gravitational Microlensing, Doctoral Dissertation in Physics (Ludwig-Maximilians-Universität, 1990); Preprint MPA-550 (1990).

  14. S. Refsdal and J. Surdej, Preprint ESO-952 (1993).

  15. J. Wambsganss, Gravitational Lenses in the Universe, Ed. by J. Surdej et al. (Universite de Liège, Institute d’Astrophysique, 1993), p. 369.

  16. F. Delplancke, K. Gorski, and A. Richichi, Astron. Astrophys. 375, 701 (2001).

    ADS  Google Scholar 

  17. B. Paczynski, astro-ph/0306564 (2003).

  18. L. Č. Popovic, E. G. Mediavilla, P. Jovanović, and J. A. Muñoz, Astron. Astrophys. 398, 975 (2003).

    ADS  Google Scholar 

  19. A. F. Zakharov, L. Č. Popović, and P. Jovanović, in Cosmology: Exploring the Universe, Ed. by J. Dumarchez and J. Tran Thanh Van (GIOI Publishers, 2004); astro-ph/0406417.

  20. A. F. Zakharov, L. Č. Popović, and P. Jovanović, in IAU Symp. No. 225: Impact of Gravitational Lensing on Cosmology, Ed. by G. Meylan and J. Mellier (Cambridge Univ. Press, Cambridge, 2005), p. 363; astro-ph/0410378.

    Google Scholar 

  21. J. Wambsganss, in Microlensing 2000: A New Era of Microlensing Astrophysics, Ed. by J. W. Menzies and P. D. Sackett, Astron. Soc. Pac. Conf. Ser. 239, 351 (2001).

  22. E. L. Turner, Astrophys. J. 284, 1 (1984).

    Article  ADS  Google Scholar 

  23. M. Fukugita and E. L. Turner, Mon. Not. R. Astron. Soc. 253, 99 (1991).

    ADS  Google Scholar 

  24. Y. Wang, A. Stebbins, and E. L. Turner, Phys. Rev. Lett. 77, 2875 (1996).

    ADS  Google Scholar 

  25. S. Perlmutter, G. Aldering, G. Goldhaber, et al., Astrophys. J. 517, 565 (1999).

    Article  ADS  Google Scholar 

  26. J. R. Bond, D. Pogosyan, S. Prunet, et al., in Cosmology and Particle Physics, AIP Conf. Ser. 555, 263 (2001).

  27. A. Balbi, in Cosmology and Particle Physics, AIP Conf. Ser. 555, 107 (2001).

  28. O. Lahav, astro-ph/0208297 (2002).

  29. P. J. E. Peebles, astrop-ph/0208037 (2002).

  30. C. L. Bennett, M. Halpern, G. Hinshaw, et al., Astrophys. J. 97, 148 (2003); astro-ph/0302207.

    Google Scholar 

  31. D. N. Spergel, L. Verde, H. V. Peiris, et al., Astrophys. J., Suppl. Ser. 148, 175 (2003).

    Article  ADS  Google Scholar 

  32. S. L. Bridle, O. Lahav, J. P. Ostriker, and P. J. Steinhardt, Science 299, 1532 (2003).

    Article  ADS  Google Scholar 

  33. J. M. O’Meara, D. Tytler, D. Kirkman, et al., Astrophys. J. 552, 718 (2001).

    ADS  Google Scholar 

  34. S. Burles, K. Nollett, and M. S. Turner, Astrophys. J. 552, L1 (2001).

    Article  ADS  Google Scholar 

  35. M. S. Turner, Astrophys. J. 576, L101 (2001).

    ADS  Google Scholar 

  36. W. L. Freedman, B. F. Madore, B. K. Gibson, et al., Astrophys. J. 553, 47 (2001).

    Article  ADS  Google Scholar 

  37. B. R. Parodi, A. Saha, A. Sandage, and G. A. Tammann, Astrophys. J. 540, 634 (2000).

    Article  ADS  Google Scholar 

  38. G. A. Tammann and B. Reindl, Astrophys. Space Sci. 280, 165 (2002).

    Article  ADS  Google Scholar 

  39. G. A. Tammann and B. Reindl, astro-ph/0208176 (2002).

  40. R. Stompor, M. Abroe, P. Ade, et al., Astrophys. J. 561, L7 (2001).

    Article  ADS  Google Scholar 

  41. A. V. Gurevich and K. P. Zybin, Phys. Lett. A 208, 276 (1995).

    ADS  Google Scholar 

  42. A. V. Gurevich, K. P. Zybin, and V. A. Sirota, Phys. Lett. A 214, 232 (1996).

    Article  ADS  Google Scholar 

  43. A. V. Gurevich, K. P. Zybin, and V. A. Sirota, Usp. Fiz. Nauk 167, 913 (1997) [Phys. Usp. 40, 869 (1997)].

    Google Scholar 

  44. J. S. B. Wyithe and E. Turner, Astrophys. J. 567, 18 (2002).

    Article  ADS  Google Scholar 

  45. J. S. B. Wyithe and E. Turner, Astrophys. J. 575, 560 (2002).

    Article  ADS  Google Scholar 

  46. D. Walsh, R. F. Carswell, and R. J. Weymann, Nature 279, 381 (1979).

    Article  ADS  Google Scholar 

  47. E. L. Turner, Astrophys. J. 365, L43 (1990).

    Article  ADS  Google Scholar 

  48. M. R. S. Hawkins, Nature 366, 242 (1993).

    Article  ADS  Google Scholar 

  49. M. R. S. Hawkins, Mon. Not. R. Astron. Soc. 329, 76 (2002).

    Article  ADS  Google Scholar 

  50. M. Rees, Annu. Rev. Astron. Astrophys. 22, 471 (1984).

    Article  ADS  Google Scholar 

  51. I. Aretxaga and R. Terlevich, Mon. Not. R. Astron. Soc. 269, 462 (1994).

    ADS  Google Scholar 

  52. T. Kawaguchi, S. Mineshige, M. Umemura, and E. L. Turner, Astrophys. J. 504, 671 (1998).

    Article  ADS  Google Scholar 

  53. M. R. S. Hawkins, Mon. Not. R. Astron. Soc. 278, 787 (1996).

    ADS  Google Scholar 

  54. E. Ros, J. C. Guirado, and J. M. Marcaide, Highlights of Spanish Astrophysics II, Proc. of the 4th Scientific Meeting of the Spanish Astronomical Society, Ed. by J. Zamorano, J. Gorgas, and J. Gallego (Kluwer Acad. Publ., Dordrecht, 2001), p. 49.

    Google Scholar 

  55. A. O. Petters, H. Levine, and J. Wambsganss, Singular Theory and Gravitational Lensing (Birkhäuser, Boston, 2001).

    Google Scholar 

  56. P. Schneider and A. Weiss, Astron. Astrophys. 260, 1 (1992).

    ADS  MathSciNet  Google Scholar 

  57. M. Treyer and J. Wambsganss, Astron. Astrophys. 416, 19 (2004).

    Article  ADS  Google Scholar 

  58. J. S. B. Wyithe and E. L. Turner, Astrophys. J. 567, 18 (2002).

    Article  ADS  Google Scholar 

  59. J. S. B. Wyithe and E. L. Turner, Astrophys. J. 575, 650 (2002).

    Article  ADS  Google Scholar 

  60. H. Tadros, S. Warren, and P. Hewett, New Astron. Rev. 42, 115 (1998).

    ADS  Google Scholar 

  61. T. Totani, Astrophys. J. 586, 735 (2003).

    Article  ADS  Google Scholar 

  62. K. T. Inoue and M. Chiba, Astrophys. J. 591, L83 (2003).

    Article  ADS  Google Scholar 

  63. E. Hog, I. D. Novikov, and A. G. Polnarev, Astron. Astrophys. 294, 287 (1995).

    ADS  Google Scholar 

  64. M. A. Walker, Astrophys. J. 453, 37 (1995).

    Article  ADS  Google Scholar 

  65. M. Miyamoto and Y. Yoshii, Astron. J. 110, 1427 (1995).

    Article  ADS  Google Scholar 

  66. M. V. Sazhin, Pis’ma Astron. Zh. 22, 647 (1996) [Astron. Lett. 22, 573 (1996)].

    Google Scholar 

  67. M. V. Sazhin, V. E. Zharov, A. V. Volynkin, and T. A. Kalinina, Mon. Not. R. Astron. Soc. 300, 287 (1998).

    Article  ADS  Google Scholar 

  68. B. Paczynski, Astrophys. J. 494, L23 (1998).

    ADS  Google Scholar 

  69. A. F. Boden, M. Shao, and D. Van Buren, Astrophys. J. 502, 538 (1998).

    Article  ADS  Google Scholar 

  70. M. Honma, Publ. Astron. Soc. Jpn. 53, 223 (2001).

    ADS  Google Scholar 

  71. M. Honma and T. Kurayama, Astrophys. J. 568, 717 (2002).

    Article  ADS  Google Scholar 

  72. R. Takahashi, Astrophys. J. 595, 418 (2003).

    ADS  Google Scholar 

  73. G. F. Lewis and R. A. Ibata, Astrophys. J. 501, 478 (1998).

    Article  ADS  Google Scholar 

  74. H. Asada, in Proceedings of the 11th Workshop on General Relativity and Gravitation in Japan, 2002, p. 228.

  75. R. Takahashi, in Proceedings of the 12th Workshop on General Relativity and Gravitation in Japan, 2002, p. 400.

  76. I. Newton, Optics: Or a Treatise of the Reflections, Refractions, Inflections and Colours of Light.

  77. J. Soldner, Berlin. Astron. Jahrb. 1804, 161 (1804).

    Google Scholar 

  78. A. Einstein, Collected Scientific Works (Nauka, Moscow, 1965), Vol. 1, p. 435 [in Russian].

    Google Scholar 

  79. F. W. Dyson, A. S. Eddington, and C. Davidson, Phil. Trans. R. Soc. London A 220, 291 (1920).

    ADS  Google Scholar 

  80. P. Schneider, J. Ehlers, and E. E. Falco, Gravitational Lenses (Springer, Berlin, 1992).

    Google Scholar 

  81. C. Alcock, R. A. Allsman, D. R. Alves, et al., Astrophys. J. 542, 281 (2000).

    ADS  Google Scholar 

  82. K. Griest, Dark Matter in Astro-and Particle Physics. Proceedings of the International Conference DARK-2002, 2002, p. 62.

  83. C. Alcock, R. A. Allsman, D. R. Alves, et al., Astrophys. J. 541, 734 (2000).

    ADS  Google Scholar 

  84. M. Treyer and J. Wambsganss, Astron. Astrophys. 416, 19 (2004); astro-ph/0311519.

    Article  ADS  Google Scholar 

  85. P. R. Wozniak, C. Alard, A. Udalski, et al., Astrophys. J. 529, 88 (2000).

    ADS  Google Scholar 

  86. P. R. Wozniak, A. Udalski, M. Szymanski, et al., Astrophys. J. 540, L65 (2000).

    ADS  Google Scholar 

  87. P. Schneider, J. Ehlers, and E. E. Falco, Gravitational Lenses (Springer, Berlin, 1992).

    Google Scholar 

  88. C. J. Fluke and R. L. Webster, Mon. Not. R. Astron. Soc. 302, 68 (1999).

    Article  ADS  Google Scholar 

  89. S. Mao, Astrophys. J. 389, 63 (1992).

    Article  ADS  Google Scholar 

  90. A. Yonehara, Publ. Astron. Soc. Austral. 18, 211 (2001).

    ADS  Google Scholar 

  91. A. F. Zakharov, Astron. Astrophys. 293, 1 (1995).

    ADS  Google Scholar 

  92. T. Oshima, K. Mitsuda, R. Fujimoto, et al., Astrophys. J. 563, L103 (2001).

    Article  ADS  Google Scholar 

  93. X. Dai, G. Chartas, E. Agol, et al., Astrophys. J. 589, 100 (2003).

    Article  ADS  Google Scholar 

  94. G. Chartas, W. N. Brandt, S. M. Gallagher, and G. P. Garmire, Astrophys. J. 579, 169 (2002).

    Article  ADS  Google Scholar 

  95. N. White, Nature 407, 146 (2000).

    ADS  Google Scholar 

  96. W. Cash, A. Shipley, S. Osterman, and M. Joy, Nature 407, 160 (2000).

    Article  ADS  Google Scholar 

  97. M. C. Angonin-Willaime, C. Vanderriest, F. Courbin, et al., Astron. Astrophys. 347, 434 (1999).

    ADS  Google Scholar 

  98. R. Ostensen, M. Remy, P. O. Lindblad, et al., Astron. Astrophys., Suppl. Ser. 126, 393 (1997).

    ADS  Google Scholar 

  99. D. A. Turnshek, O. L. Lupie, S. M. Rao, et al., Astrophys. J. 485, 100 (1997).

    Article  ADS  Google Scholar 

  100. K.-H. Chae, D. A. Turnshek, R. E. Schulte-Ladbeck, et al., Astrophys. J. 568, 509 (2001).

    Google Scholar 

  101. A. F. Zakharov, A. A. Nucita, F. De Paolis, and G. Ingrosso, New Astron. 10, 479 (2005).

    ADS  Google Scholar 

  102. A. F. Zakharov, Astrophys. Space Sci. 252, 369 (1997).

    ADS  Google Scholar 

  103. L. C. Popovic, P. Jovanovic, E. Mediavilla, et al., Astrophys. J. (2005) (accepted); astro-ph/0510271.

  104. A. F. Zakharov, F. De Paolis, G. Ingrosso, and A. A. Nucita, Astron. Astrophys. 442, 795 (2005).

    Article  ADS  Google Scholar 

  105. G. A. Moelennbrock, K. Fuisawa, R. A. Preston, et al., Astron. J. 111, 2174 (1996).

    ADS  Google Scholar 

  106. W. K. Scott, E. B. Fomalont, S. Horiuchi, et al., Astrophys. J., Suppl. Ser. 155, 33 (2004).

    Article  ADS  Google Scholar 

  107. S. Horiuchi, E. B. Fomalont, W. K. Scott, et al., Astrophys. J. 616, 110 (2004).

    Article  ADS  Google Scholar 

  108. Y. Y. Kovalev, K. I. Kellermann, M. L. Lister, et al., astro-ph/0505536.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.F. Zakharov, 2006, published in Astronomicheskiĭ Zhurnal, 2006, Vol. 83, No. 2, pp. 99–112.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zakharov, A.F. Possibilities for studying microlensing of distant quasars using the RADIOASTRON space interferometer. Astron. Rep. 50, 79–90 (2006). https://doi.org/10.1134/S1063772906020016

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772906020016

Keywords

Navigation