Skip to main content
Log in

Method for Optimal Analytical Approximation of Time Samplings in Analyzing Nonstationary Periodic Signals

  • ATMOSPHERIC AND AEROACOUSTICS
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

An algorithm has been developed for determining the frequency and amplitude of the harmonic components of a weakly nonstationary acoustic signal, which also contains random noise and drift of the constant component. The algorithm was tested on a signal simulating flight of an aircraft over a measurement point. For a model source simulating a the propeller of UAV, the possibility of determining the harmonic amplitudes of a propeller with varying revolutions and under noise interference conditions was demonstrated using the unique scientific installation the TsAGI AC-2 anechoic chamber with flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. O. V. Rudenko and V. A. Gusev, Acoust. Phys. 66 (6), 587 (2020).

    Article  ADS  Google Scholar 

  2. V. F. Kopiev, I. V. Khramtsov, and V. V. Palchikovskiy, Acoust. Phys. 65 (3), 288 (2019).

    Article  ADS  Google Scholar 

  3. V. F. Kopiev, I. V. Khramtsov, V. V. Ershov, and V. V. Palchikovskiy, Acoust. Phys. 65 (1), 67 (2019).

    Article  ADS  Google Scholar 

  4. V. F. Kopiev, I. V. Khramtsov, M. Yu. Zaytsev, E. S. Cherenkova, O. Yu. Kustov, and V. V. Palchikovskiy, Acoust. Phys. 64 (4), 503 (2018).

    Article  ADS  Google Scholar 

  5. R.B. Randall, Frequency Analysis (Larsen and Son A/S, Glostrup, 1989).

  6. V. I. Vorontsov, G. A. Faranosov, S. A. Karabasov, and M. Yu. Zaitsev, Acoust. Phys. 66 (3), 303 (2020).

    Article  ADS  Google Scholar 

  7. I. V. Belyaev, Acoust. Phys. 58 (4), 387 (2012).

    Article  ADS  Google Scholar 

  8. S. L. Marple, Jr., Digital Spectral Analysis: with Applications (Prentice Hall, 1987; Mir, Moscow, 1990).

  9. V. F. Pisarenko, Geophys. J. R. Astron. Soc. 33 (3), 347 (1973).

    Article  ADS  Google Scholar 

  10. B. Boashash, Proc. IEEE 80 (4), 520 (1992).

    Article  ADS  Google Scholar 

  11. B. Boashash, Proc. IEEE 80 (4), 540 (1992).

    Article  ADS  Google Scholar 

  12. B. G. Quinn, IEEE Trans. Signal Process. 45 (3), 814 (1997).

    Article  ADS  Google Scholar 

  13. E. Aboutanios and B. Mulgrew, IEEE Trans. Signal Process. 53 (4), 1237 (2005).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Funding

The experimental part of the study was carried out in the TsAGI AC-2 anechoic chamber with flow facility, upgraded with the financial support of the Ministry of Science and Higher Education of the Russian Federation under agreement no. 075-15-2022-1036.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Yu. Makashov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vishnyakov, A.N., Makashov, S.Y. Method for Optimal Analytical Approximation of Time Samplings in Analyzing Nonstationary Periodic Signals. Acoust. Phys. 69, 173–181 (2023). https://doi.org/10.1134/S1063771023700586

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771023700586

Keywords:

Navigation