Skip to main content
Log in

Low-Frequency Shear Elasticity of the Homological Series of Normal Hydrocarbons

  • PHYSICAL ACOUSTICS
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

The low-frequency (74 kHz) shear elasticity of the homologous series of normal hydrocarbons (alkanes) is studied using acoustic resonance. The shear modulus and mechanical loss tangent are measured, and the relaxation frequency and effective viscosity are calculated. The dependences of these parameters on homologue viscosity are established. It is shown that the mechanical loss tangent of all studied liquids is less than 1, demonstrating that the relaxation frequency is below the experimental frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

REFERENCES

  1. Ya. I. Frenkel’, Kinetic Theory of Liquids (Nauka, Leningrad, 1975) [in Russian].

    Google Scholar 

  2. U. B. Bazaron, B. V. Deryagin, and A. V. Bulgadaev, Dokl. Akad. Nauk SSSR 160 (4), 799 (1965).

    Google Scholar 

  3. U. B. Bazaron, B. V. Deryagin, and A. V. Bulgadaev, Zh. Eksp. Teor. Fiz. 51 (4), 969 (1966).

    Google Scholar 

  4. B. B. Badmaev, T. S. Dembelova, D. N. Makarova, and Ch. Zh. Gulgenov, Russ. Phys. J. 62 (9), 1708 (2020).

  5. B. B. Badmaev, T. S. Dembelova, B. B. Damdinov, and Ch. Zh. Gulgenov, Acoust. Phys. 63 (6), 642 (2017).

    Article  ADS  Google Scholar 

  6. V. A. Gusev and D. A. Zharkov, Acoust. Phys. 68 (6), 549 (2022). https://doi.org/10.1134/S1063771022060045

    Article  ADS  Google Scholar 

  7. E. S. Shamsutdinova, V. I. Anisimkin, A. S. Fionov, A. V. Smirnov, V. V. Kolesov, and I. E. Kuznetsova, Acoust. Phys. 69 (1), 87 (2023). https://doi.org/10.1134/S1063771022700531

    Article  ADS  Google Scholar 

  8. A. V. Minakov, M. I. Pryazhnikov, B. B. Damdinov, and I. V. Nemtsev, Acoust. Phys. 68 (2), 155 (2022). https://doi.org/10.1134/S1063771022020051

    Article  ADS  Google Scholar 

  9. M. A. Mironov, I. A. Shelomikhina, O. M. Zozulya, and I. B. Esipov, Acoust. Phys. 58 (1), 117 (2012).

    Article  ADS  Google Scholar 

  10. D. Cholakova, K. Tsvetkova, S. Tcholakova, and N. Denkov, Colloids Surf. A: Physicochem. Eng. Aspects 634, 127926 (2022).

    Article  Google Scholar 

  11. S. Iliev, S. Tsibranska, A. Ivanova, S. Tcholakova, and N. Denkov, J. Colloid Interface Sci. 638, 743 (2022). https://doi.org/10.1016/j.jcis.2023.01.126

    Article  ADS  Google Scholar 

  12. M. J. Nowak and S. J. Severtson, J. Mater. Sci. 36, 4159 (2001).

    Article  ADS  Google Scholar 

  13. D. Cholakova and N. Denkov, Adv. Colloid Interface Sci. 269, 7 (2019).

    Article  Google Scholar 

  14. D. N. Makarova, B. B. Badmaev, and T. S. Dembelova, Acoust. Phys. 66 (6), 613 (2020). https://doi.org/10.1134/S1063771020050103

    Article  ADS  Google Scholar 

  15. B. B. Badmaev, T. S. Dembelova, D. N. Makarova, E. D. Vershinina, S. B. Fedorova, and A. N. Mashanov, Vestn. Buryat. Gos. Univ., No. 1, 45 (2022). https://doi.org/10.18101/2304-5728-2022-1-45-56

  16. B. P. Nikol’skii, Handbook for Chemists (Khimiya, Leningrad, 1966), Vol. 1 [in Russian].

    Google Scholar 

  17. B. B. Badmaev, T. S. Dembelova, D. N. Makarova, and Ch. Zh. Gulgenov, Tech. Phys. 62 (1), 14 (2017). https://doi.org/10.1134/S1063784217010042

    Article  Google Scholar 

  18. B. B. Badmaev, B. B. Damdinov, and T. S. Dembelova, Bull. Russ. Acad. Sci., Phys. 79 (10), 1301 (2015). https://doi.org/10.3103/S1062873815100044

    Article  Google Scholar 

  19. B. B. Badmaev, D. N. Makarova, B. B. Damdinov, D. S. Sanditov, and T. S. Dembelova, Russ. Phys. J. 57 (6), 742 (2014).

  20. S. O. Ilyin and L. A. Strelets, Energy Fuels 32, 268 (2018). https://doi.org/10.1021/acs.energyfuels.7b03058

    Article  Google Scholar 

  21. S. Zhu, X. Liu, and Z. Zhang, in Proc. IWAMA 2021: Advanced Manufacturing and Automation XI, Ed. by Y. Wang, K. Martinsen, T. Yu, and K. Wang (Springer, Singapore, 2021), Vol. 880. https://doi.org/10.1007/978-981-19-0572-8_17.

  22. V. O. Abramov, A. Abramova, V. Bayazitov, M. S. Mullakaev, and A. V. Marnosov, Ultrason. Sonochem. 35, 389 (2017). https://doi.org/10.1016/j.ultsonch.2016.10.017

    Article  Google Scholar 

  23. X. Huang, C. Zhou, Q. Suo, L. Zhang, and S. Wang, Ultrason. Sonochem. 41, 661 (2018). https://doi.org/10.1016/j.ultsonch.2017.09.021

    Article  Google Scholar 

Download references

Funding

The study was supported from the budget of the Institute of Physical Materials Science of the Siberian Branch of the Russian Academy of Sciences. No additional grants were received to conduct or direct this specific study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. S. Dembelova, D. N. Makarova or B. B. Badmaev.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dembelova, T.S., Makarova, D.N. & Badmaev, B.B. Low-Frequency Shear Elasticity of the Homological Series of Normal Hydrocarbons. Acoust. Phys. 70, 35–38 (2024). https://doi.org/10.1134/S1063771023601413

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771023601413

Keywords:

Navigation