Skip to main content
Log in

Modeling the Solution of the Acoustic Inverse Problem of Scattering for a Three-Dimensional Nonstationary Medium

  • ACOUSTIC SIGNALS PROCESSING. COMPUTER SIMULATION
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

The inverse problem of acoustic sounding of a three-dimensional nonstationary medium is considered, based on the Cauchy problem for the wave equation with a sound speed coefficient depending on the spatial coordinates and time. The data in the inverse problem are measurements of time-dependent acoustic pressure in some spatial domain. Using these data, it is necessary to determine the positions of local acoustic inhomogeneities (spatial sound speed distributions), which change over time. A special idealized sounding model is used, in which, in particular, it is assumed that the spatial sound speed distribution changes little in the interval between source time pulses. With such a model, the inverse problem is reduced to solving three-dimensional Fredholm linear integral equations for each sounding time interval. Using these solutions, the spatial sound speed distributions are calculated in each sounding time interval. When a special (plane-layer) geometric scheme for the location of the observation and sounding domains is included in the sounding scheme, the inverse problem can be reduced to solving systems of one-dimensional linear Fredholm integral equations, which are solved by well-known methods for regularizing ill-posed problems. This makes it possible to solve the three-dimensional inverse problem of determining the nonstationary sound speed distribution in the sounded medium on a personal computer of average performance for fairly detailed spatial grids in a few minutes. The efficiency of the corresponding algorithm for solving a three-dimensional nonstationary inverse sounding problem in the case of moving local acoustic inhomogeneities is illustrated by solving a number of model problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. O. A. Ladyzhenskaya, Mixed Problem for Hyperbolic Equation (Gos. Izd. Tekhniko-Matematicheskoi Lit., Moscow, 1953) [in Russian].

    Google Scholar 

  2. O. A. Ladyzhenskaya, Boundary Problems for Mathematical Physics (Nauka, Moscow, 1973) [in Russian].

  3. A. I. Prilepko, D. G. Orlovsky, and I. A. Vasin, Methods for Solving Inverse Problems in Mathematical Physics (CRC, 2000).

    Google Scholar 

  4. M. M. Lavrent’ev, Dokl. Akad. Nauk SSSR 157 (3), 520 (1964).

    Google Scholar 

  5. Yu. E. Anikonov, Mat. Zametki 19 (2), 211 (1976).

    MathSciNet  Google Scholar 

  6. A. L. Bukhgeim and V. G. Yakhno, Dokl. Akad. Nauk SSSR 229 (4), 785 (1976).

    MathSciNet  Google Scholar 

  7. A. G. Ramm, Multidimensional Inverse Scattering Problems (Longman Scientific & Technical, Harlow, 1992).

    Google Scholar 

  8. L. Beilina and M. V. Klibanov, Approximate Global Convergence and Adaptivity for Coefficient Inverse Problems (Springer, New York, 2012).

    Book  Google Scholar 

  9. S. I. Kabanikhin, A. D. Satybaev, and M. A. Shishlenin, Direct Methods of Solving Multidimensional Inverse Hyperbolic Problems (VSP, Utrecht, 2004).

    Book  Google Scholar 

  10. M. I. Belishev, Inverse Probl. 23 (5), 1 (2007).

    Article  ADS  Google Scholar 

  11. L. N. Pestov, V. M. Bolgova, and A. N. Danilin, Vestn. Yugorsk. Gos. Univ., No. 3, 92 (2011).

  12. D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 2nd ed. (Springer, Berlin, 1998).

    Book  Google Scholar 

  13. A. A. Goryunov and A. V. Saskovets, Reverse Scattering Problems for Acoustics (Moscow Univ., Moscow, 1989) [in Russian].

    Google Scholar 

  14. V. A. Burov and O. D. Rumyantseva, Reverse Wave Problems on Acoustical Tomography, Part 2: Reverse Problems on Acoustical Scattering (LENAND, Moscow, 2020) [in Russian].

  15. A. Bakushinsky and A. Goncharsky, Ill-Posed Problems: Theory and Applications (Kluwer Academic., Dordrecht, 1994).

    Book  Google Scholar 

  16. A. B. Bakushinsky and M. Yu. Kokurin, Iterative Methods for Approximate Solution of Inverse Problems. Mathematics and Its Applications (Kluwer Academic., Dordrecht, 2004).

    Google Scholar 

  17. A. V. Goncharskii and S. Yu. Romanov, Zh. Vychisl. Mat. Mat. Fiz. 52 (2), 263 (2012).

    Google Scholar 

  18. A. V. Goncharskii and S. Yu. Romanov, Vychisl. Metody Program.: Nov. Vychisl. Tekhnol. 13 (1), 235 (2012).

    Google Scholar 

  19. R. O. Evstigneev, M. Yu. Medvedik, Yu. G. Smirnov, and A. A. Tsupak, Izv. Vyssh. Uchebn. Zaved. Povolzh. Region, Fiz.-Mat. Nauki 44 (4), 3 (2017).

    Google Scholar 

  20. R. G. Novikov, Funkts. Anal. Ego Pril. 20 (3), 90 (1986).

    Google Scholar 

  21. V. A. Burov, N. V. Alekseenko, and O. D. Rumyantseva, Acoust. Phys. 55 (6), 843 (2009).

    Article  ADS  Google Scholar 

  22. V. A. Burov, S. N. Vecherin, S. A. Morozov, and O. D. Rumyantseva, Acoust. Phys. 56 (4), 541 (2010).

    Article  ADS  Google Scholar 

  23. A. G. Sveshnikov, A. N. Bogolyubov, and V. V. Kravtsov, Lectures on Mathematical Physics (Moscow Univ., Moscow, 1993) [in Russian].

    Google Scholar 

  24. V. I. Smirnov, Course of Higher Mathematics (Gos. Izd. Tekhniko-Tekhnich. Lit., Moscow, 1951), Vol. 2 [in Russian].

    Google Scholar 

  25. A. B. Bakushinskii and A. S. Leonov, Zh. Vychisl. Mat. Mat. Fiz. 60 (6), 1013 (2020).

    Google Scholar 

  26. A. B. Bakushinskii and A. S. Leonov, Zh. Vychisl. Mat. Mat. Fiz. 62 (2), 289 (2022).

    Google Scholar 

  27. A. N. Tikhonov, A. S. Leonov, and A. G. Yagola, Nonlinear Ill-Posed Problems, 2nd ed. (Kurs, Moscow, 2017) [in Russian].

    Google Scholar 

  28. A. S. Leonov, Solving Ill-Posed Problems. Theory, Practical Algorithms and Demonstration in MATLAB, 2nd ed. (Librokom, Moscow, 2013) [in Russian].

    Google Scholar 

Download references

Funding

The study was supported by the Russian Science Foundation (project no. 22-71-10070) for the first author and the Program for Improving the Competitiveness of the National Research Nuclear University MEPhI (project 02.a03.21.0005 of August 27, 2013) for the second. The main results of sections 1–3 were obtained through a grant from the Russian Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Leonov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakushinsky, A.B., Leonov, A.S. Modeling the Solution of the Acoustic Inverse Problem of Scattering for a Three-Dimensional Nonstationary Medium. Acoust. Phys. 70, 153–164 (2024). https://doi.org/10.1134/S1063771023601401

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771023601401

Keywords:

Navigation