Skip to main content
Log in

Features of Rayleigh Scattering by a Particle Near an Interface

  • CLASSICAL PROBLEMS OF LINEAR ACOUSTICS AND WAVE THEORY
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

Features of Rayleigh scattering by a solid particle at a small distance compared to the wavelength from an impenetrable plane boundary are revealed. The choice of the Green’s function in the integral representation of the Helmholtz equation makes it possible to reduce integration only over the particle surface and eliminate the contribution of the interface surface. When expanding over a small wave parameter, a well-known approach is used, making it possible to represent the solution of a given order as the sum of a potential function and a component expressed in terms of lower-order approximations. The potential component is found, expressed in terms of solid irregular harmonics centered on the particle and its mirror image. The vibrational velocity of the center of a particle and the scattering amplitude are determined. In the lowest order of the wavenumber, the scattering amplitude is expressed in terms of the monopole and dipole components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

REFERENCES

  1. A. O. Maksimov and Yu. A. Polovinka, Acoust. Phys. 63 (1), 26 (2017). https://doi.org/10.1134/S1063771016060099

    Article  ADS  Google Scholar 

  2. A. O. Maksimov and Yu. A. Polovinka, Acoust. Phys. 64 (1), 27 (2018). https://doi.org/10.1134/S106377101801013X

    Article  ADS  Google Scholar 

  3. G. C. Gaunaurd and H. Huang, J. Acoust. Soc. Am. 96 (4), 2526 (1994). https://doi.org/10.1121/1.410126

    Article  ADS  Google Scholar 

  4. G. C. Gaunaurd and H. Huang, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43 (4), 690 (1996). https://doi.org/10.1109/58.503731

    Article  Google Scholar 

  5. E. L. Shenderov, Acoust. Phys. 48 (5), 607 (2002). https://doi.org/10.1134/1.1507206

    Article  ADS  Google Scholar 

  6. N. S. Grigorieva, M. S. Kupriyanov, D. A. Mikhailova, and D. B. Ostrovskiy, Acoust. Phys. 62 (1), 8 (2016). https://doi.org/10.1134/S1063771016010036

    Article  ADS  Google Scholar 

  7. P. Zhang, H. Bachman, A. Ozcelik, and T. G. Huang, Annu. Rev. Anal. Chem. 13, 17 (2020). https://doi.org/10.1146/annurev-anchem-090919-102205

    Article  Google Scholar 

  8. J. Friend and L. Y. Yeo, Rev. Mod. Phys. 83 (2), 647 (2011). https://doi.org/10.1103/RevModPhys.83.647

    Article  ADS  Google Scholar 

  9. P. R. Birkin, D. G. Offin, and T. G. Leighton, Ultrason. Sonochem. 29, 612 (2016). https://doi.org/10.1016/j.ultsonch.2015.10.001

    Article  Google Scholar 

  10. O. A. Godin, J. Acoust. Soc. Am. 133 (2), 709 (2012). https://doi.org/10.1121/1.47742777

    Article  ADS  Google Scholar 

  11. V. A. Gusev and O. V. Rudenko, Acoust. Phys. 56 (6), 861 (2010). https://doi.org/10.1134/S1063771010060102

    Article  ADS  Google Scholar 

  12. A. Maksimov, J. Acoust. Soc. Am. 151 (3), 1464 (2022). https://doi.org/10.1121/10.0009673

    Article  ADS  Google Scholar 

  13. T. S. Vikulova, I. N. Didenkulov, V. V. Kulinich, N. V. Pronchatov-Rubtsov, and D. V. Sakharov, Acoust. Phys. 69 (1), 24 (2023). https://doi.org/10.1134/S1063771022600292

    Article  ADS  Google Scholar 

  14. B. E. Simon and M. F. Hamilton, J. Acoust. Soc. Am. 153 (1), 627 (2023). https://doi.org/10.1121/10.0016885

    Article  ADS  Google Scholar 

  15. G. Dassios and R. Kleinman, J. Appl. Math. 62 (1), 61 (1999). https://doi.org/10.1093/imamat/62.1.61

    Article  Google Scholar 

  16. A. A. Doinikov and A. Bouakaz, Phys. Med. Biol. 60 (20), 7909 (2015). https://doi.org/10.1088/0031-9155/60/20/7909

    Article  Google Scholar 

  17. O. R. Gruzan, Q. Appl. Math. 20 (1), 33 (1962). https://doi.org/10.1090/qam/132851

    Article  Google Scholar 

  18. A. Maksimov, J. Theor. Comput. Acoust. 30 (4), 2150019 (2022). https://doi.org/10.1142/S2591728521500195

    Article  MathSciNet  Google Scholar 

  19. I. N. Didenkulov and A. A. Sagacheva, Acoust. Phys. 66 (1), 12 (2020). https://doi.org/10.1134/S1063771019060022

    Article  ADS  Google Scholar 

  20. D. V. Krysanov, A. G. Kyurkchan, and S. A. Manenkov, Acoust. Phys. 67 (2), 108 (2021). https://doi.org/10.1134/S1063771021020020

    Article  ADS  Google Scholar 

  21. S. C. Hawkins, T. Rother, and J. Wauer, J. Acoust. Soc. Am. 147 (6), 4097 (2020). https://doi.org/10.1121/10.0001472

    Article  ADS  Google Scholar 

  22. M. Majić, J. Quant. Spectrosc. Radiat. Transfer 276, 107945 (2021).

    Article  Google Scholar 

  23. A. G. Kyurkchan and S. A. Manenkov, Phys. Dokl. 42 (11), 594 (1997).

    ADS  Google Scholar 

  24. A. G. Kyurkchan and S. A. Manenkov, Acoust. Phys. 64 (5), 527 (2018).

    Article  ADS  Google Scholar 

Download references

Funding

The study was supported by the Il’ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences (project no. 121021700341-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. Maksimov.

Ethics declarations

The author of this work declares that he has no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maksimov, A.O. Features of Rayleigh Scattering by a Particle Near an Interface. Acoust. Phys. 70, 1–8 (2024). https://doi.org/10.1134/S1063771023601395

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771023601395

Keywords:

Navigation