Skip to main content
Log in

Improvement of Optoacoustic Angiographic Images Using One-Dimensional Deconvolution with Adaptive Real-Time Self-Calibration

  • ACOUSTICS OF LIVING SYSTEMS. BIOMEDICAL ACOUSTICS
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

This work introduces a method of one-dimensional deconvolution with Tikhonov regularization for enhancing three-dimensional optoacoustic images in vivo. The method employs adaptive self-calibration to eliminate frequency-dependent distortions associated with ultrasound propagation and detection. By adapting to the inhomogeneous frequency characteristics of the examined medium, the method eliminates the need for additional calibration experiments. The processing time for three-dimensional optoacoustic data of size 200 × 200 × 100 voxels is less than 5 ms, facilitating the real-time enhancement of angiographic images and improving the effective spatial resolution by more than 50%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. M. A. Proskurnin, V. R. Khabibullin, L. O. Usoltseva, E. A. Vyrko, I. V. Mikheev, and D. S. Volkov, Phys. Usp. 65 (3), 270 (2022).

    Article  ADS  CAS  Google Scholar 

  2. S. V. Egerev and Ya. O. Simanovsky, Acoust. Phys. 68 (1), 83 (2022).

    Article  ADS  Google Scholar 

  3. A. B. E. Attia, G. Balasundaram, M. Moothanchery, U. S. Dinish, R. Bi, V. Ntziachristos, and M. Olivo, Photoacoustics 16, 100 (2019).

    Article  Google Scholar 

  4. X. L. Deán-Ben and D. Razansky, Experim. Dermatol. 30 (11), 1598 (2021).

    Article  Google Scholar 

  5. T. D. Khokhlova, I. M. Pelivanov, and A. A. Karabutov, Acoust. Phys. 55 (4-5), 674 (2009).

    Article  ADS  CAS  Google Scholar 

  6. L. Lin and L. V. Wang, Nat. Rev. Clin. Oncol. 19 (6), 365 (2022).

    Article  PubMed  Google Scholar 

  7. S. Jeon, J. Kim, D. Lee, J. W. Baik, and C. Kim, Photoacoustics 15, 100 (2019).

    Google Scholar 

  8. J. Gröhl, K. K. Dreher, M. Schellenberg, T. Rix, N. Holzwarth, P. Vieten, L. Ayala, S. E. Bohndiek, A. Seitel, and L. Maier-Hein, J. Biomed. Opt. 27 (8), 083010 (2022).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  9. B. T. Cox, J. G. Laufer, P. C. Beard, and S. R. Arridge, J. Biomed. Opt. 17 (6), 061202 (2012).

    Article  ADS  PubMed  Google Scholar 

  10. A. Rosenthal, V. Ntziachristos, and D. Razansky, Curr. Med. Imaging 9 (4), 318 (2013).

    Article  Google Scholar 

  11. B. E. Treeby and B. T. Cox, J. Biomed. Opt. 15 (2), 021314 (2010).

    Article  ADS  PubMed  Google Scholar 

  12. V. V. Perekatova, I. I. Fiks, and P. V. Subochev, Radiophys. Quantum Electron. 57 (1), 67 (2014).

    Article  ADS  Google Scholar 

  13. K. B. Chowdhury, J. Prakash, A. Karlas, D. Justel, and V. Ntziachristos, IEEE Trans. Med. Imaging 39 (10), 3218 (2020).

    Article  PubMed  Google Scholar 

  14. L. Hirsch, M. G. Gonzalez, and L. Rey Vega, Rev. Sci. Instrum. 92 (11), 114901 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. W. Li, U. A. T. Hofmann, J. Rebling, Q. Zhou, Z. Chen, A. Ozbek, Y. Gong, P. Subochev, D. Razansky, and X. L. Deán-Ben, Laser Photon. Rev. 16 (5), 2100381 (2022).

    Article  ADS  CAS  Google Scholar 

  16. Physical Principles of Medical Ultrasonics, Ed. by C. R. Hill, J. C. Bamber, and G. R. ter Haar (John Wiley and Sons, 2004; Fizmatlit, Moscow, 2008).

  17. H. Jin, S. Liu, R. Zhang, Z. Zheng, and Y. Zheng, in Proc. IEEE Int. Symp. on Circuits and Systems (ISCAS) (2020), p. 1.

  18. N. Awasthi, G. Jain, S. K. Kalva, M. Pramanik, and P. K. Yalavarthy, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 67 (12), 2660 (2020).

    Article  PubMed  Google Scholar 

  19. M. W. Kim, G.-S. Jeng, I. Pelivanov, and M. O’Donnell, IEEE Trans. Med. Imaging 39 (11), 3379 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  20. C. Yang, Y. Jiao, X. Jian, and Y. Cui, Photonics. MDPI 8 (2), 25 (2021).

    Article  Google Scholar 

  21. J. Wang, C. Zhang, and Y. Wang, Biomed. Eng. Online 16 (1), 1 (2017).

    Article  Google Scholar 

  22. D. Cai, Z. Li, and S. L. Chen, Biomed. Opt. Express 7, 369 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  23. D. van de Sompel, L. S. Sasportas, J. V. Jokerst, and S. S. Gambhir, PLoS ONE 11, 0152597 (2016).

    Article  Google Scholar 

  24. P. Warbal and R. K. Saha, J. Modern Opt. 69 (9), 487 (2022).

    Article  ADS  MathSciNet  Google Scholar 

  25. U. A. T. Hofmann, W. Li, X. L. Deán-Ben, P. Subochev, H. Estrada, and D. Razansky, Photoacoustics 28, 100405 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  26. A. A. Kurnikov, K. G. Pavlova, A. G. Orlova, A. V. Khilov, V. V. Perekatova, A. V. Kovalchuk, and P. V. Subochev, Quantum Electron. 51 (5), 383 (2021).

    Article  ADS  CAS  Google Scholar 

  27. https://github.com/photoacousticsRU/TRDeconv.

Download references

ACKNOWLEDGMENTS

The authors acknowledge technical contribution to this work from the engineers of the IAP RAS: Maxim Prudnikov, Vladimir Vorobiev, Vyacheslav Kazakov, Roman Kobzev, Sergey Pozhidaev, and Valentina Kotomina.

Funding

The development of an optoacoustic microscope and the acquisition of experimental data were supported by the Russian Science Foundation, project no. 19-75-10055P. The studies on the capabilities of the Tikhonov deconvolution method with adaptive self-calibration and the optimization of the software for real-time deconvolution were conducted within the framework of financial support from the Ministry of Science and Higher Education of the Russian Federation for the National Center for Photonics, project no. 075-15-2022-316). MF and MJ acknowledge financial support from Swiss National Science Foundation (SNSF), project no. 205320-179038.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. M. Timanin or P. V. Subochev.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by A. Ivanov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Timanin, E.M., Mikhailova, I.S., Fiks, I.I. et al. Improvement of Optoacoustic Angiographic Images Using One-Dimensional Deconvolution with Adaptive Real-Time Self-Calibration. Acoust. Phys. 69, 914–920 (2023). https://doi.org/10.1134/S1063771023601176

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771023601176

Keywords:

Navigation