Skip to main content
Log in

Laser Vibrometry of Shear Waves in a Layer of a Gel-Like Medium

  • ACOUSTICS OF LIVING SYSTEMS. BIOLOGICAL ACOUSTICS
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

A laser scanning vibrometer was used to measure the amplitudes and phases of the vibrational velocity of shear waves excited by a one-dimensional source in the form of a narrow rectangular bar in a gel-like medium. The vibrations of 26 plates reflecting the laser beam and located inside an optically transparent phantom along a segment with a length of 84.5 mm at a distance of 20 mm from the source were measured. The angular distributions of the amplitude and phase of shear waves at discrete frequencies from 59 to 500 Hz were measured in continuous mode. In pulsed mode, the vibrator excited a pulse in the medium with a duration of 1.5 periods of the 300 Hz frequency. The amplitudes and phases of shear waves were calculated by fast Fourier transform of the time profile of the vibration velocity of the plates with a duration of 50 ms. The angular amplitude distributions measured in the pulsed and continuous modes are qualitatively the same. At all frequencies, the distributions are symmetrical with respect to the vertical axis. The maximum oscillation amplitude is observed at angles close to ±45°. The velocity of shear waves, calculated from the measured phase distributions, increases from 2 to 2.5 m/s with a change in frequency from 50 to 500 Hz. It is shown that this velocity behavior is well described by a relaxation model of the medium with one relaxation time equal to 0.3 ms. Shear wave attenuation depends on frequency and exceeds 1 cm–1 for waves with frequencies above 250 Hz. The maximum attenuation per wavelength is observed near the relaxation frequency of the medium in the 300–400 Hz range. The results can be used to optimize devices for measuring the elasticity of soft tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. E. L. Carstensen, K. J. Parker, and R. M. Lerner, Ultrasound Med. Biol. 34 (10), 1535 (2008). https://doi.org/10.1016/j.ultrasmedbio.2008.03.002

    Article  PubMed  Google Scholar 

  2. M. Tanter, J. Bercoff, A. Athanasiou, T. Deffieux, J. L. Gennisson, G. Montaldo, M. Muller, A. Tardivon, and M. Fink, Ultrasound Med. Biol. 34 (9), 1373 (2008). https://doi.org/10.1016/j.ultrasmedbio.2008.02.002

    Article  PubMed  Google Scholar 

  3. V. G. Andreev, I. Yu. Demin, Z. A. Korolkov, and A. V. Shanin, Bull. Russ. Acad. Sci.: Phys. 80 (10), 1191 (2016). https://doi.org/10.3103/S106287381610004X

    Article  CAS  Google Scholar 

  4. S. Catheline, J.-L. Gennisson, G. Delon, M. Fink, R. Sinkus, S. Abouelkaram, and J. Culioli, J. Acoust. Soc. Am. 116, 3734 (2004). https://doi.org/10.1121/1.1815075

    Article  ADS  CAS  PubMed  Google Scholar 

  5. E. M. Timanin, E. V. Eremin, R. V. Belyaev, and A. D. Mansfel’d, Acoust. Phys. 61 (2), 249 (2015).

    Article  ADS  Google Scholar 

  6. Sh. A. Asfandiyarov, T. B. Krit, and V. G. Andreev, Bull. Russ. Acad. Sci.: Phys. 85 (6), 637 (2021). https://doi.org/10.3103/S1062873821060034

    Article  CAS  Google Scholar 

  7. F. Zvietcovich and K. V. Larin, Prog. Biomed. Eng. 4, 012007 (2022). https://doi.org/10.1088/2516-1091/ac4512

    Article  Google Scholar 

  8. S. Schwarz, B. Hartmann, J. Sauer, R. Burgkart, S. Sudhop, D. J. Rixen, and H. Clausen-Schaumann, Exp. Mech. 60 (8), 1067 (2020). https://doi.org/10.1007/s11340-020-00626-0

    Article  CAS  Google Scholar 

  9. V. G. Gasenko, R. S. Gorelik, V. E. Nakoryakov, and L. S. Timkin, J. Eng. Thermophys. 24 (4), 330 (2015). https://doi.org/10.1134/S1810232815040049

    Article  CAS  Google Scholar 

  10. I. G. Mikhailov, V. A. Solov’ev, and Yu. P. Syrnikov, Foundations of Molecular Acoustics (Nauka, Moscow, 1964) [in Russian].

    Google Scholar 

  11. G. Miller and H. Pursey, Proc. R. Soc. London 223, 521 (1954).

    ADS  Google Scholar 

  12. S. Catheline and N. Benech, J. Acoust. Soc. Am. 137 (2) (2015). https://doi.org/10.1121/1.4907742

  13. L. Sandrin, D. Cassereau, and M. Fink, J. Acoust. Soc. Am. 115 (1), 73 (2004). https://doi.org/10.1121/1.1635412

    Article  ADS  PubMed  Google Scholar 

  14. C. J. Esdaille, K. S. Washington, and C. T. Laurencin, Regener. Med. 16 (5), 495 (2021). https://doi.org/10.2217/rme-2021-0016

    Article  CAS  Google Scholar 

  15. A. Lu, J. Zhu, G. Zhang, and G. Sun, J. Mater. Chem. 21 (46), 18674 (2011). https://doi.org/10.1039/C1JM13059E

    Article  CAS  Google Scholar 

  16. A. C. Chang, J.-D. Liao, and B. H. Liu, Mech. Mater. 98, 11 (2016). https://doi.org/10.1016/j.mechmat.2016.03.005

    Article  Google Scholar 

  17. V. N. Alekseev and S. A. Rybak, Acoust. Phys. 48 (5), 511 (2002).

    Article  ADS  Google Scholar 

  18. O. V. Rudenko, S. N. Tsyuryupa, and A. P. Sarvazyan, Acoust. Phys. 62 (5), 608 (2016). https://doi.org/10.1134/S1063771016050134

    Article  ADS  Google Scholar 

  19. V. G. Andreev, T. B. Krit, and O. A. Sapozhnikov, Acoust. Phys. 57 (6), 779 (2011).

    Article  ADS  Google Scholar 

Download references

Funding

V.G. Andreeva and Sh.A. Asfandiyarov’s work on conducting the experiment and creating a phenomenological model was supported by the Russian Science Foundation (grant no. 22-22-00751, https://rscf.ru/project/22-22-00751/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Andreev.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asfandiyarov, S.A., Agafonov, A.A., Korobov, A.I. et al. Laser Vibrometry of Shear Waves in a Layer of a Gel-Like Medium. Acoust. Phys. 69, 907–913 (2023). https://doi.org/10.1134/S1063771023601097

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771023601097

Keywords:

Navigation