Skip to main content
Log in

The Use of Focused Ultrasound Beams with Shocks to Suppress Diffusion Effects in Volumetric Thermal Ablation of Biological Tissue

  • NONLINEAR ACOUSTICS
  • Published:
Acoustical Physics Aims and scope Submit manuscript

The article presents the results of numerical simulation of an experiment on irradiating ex vivo bovine liver sample by the therapeutic array of the MR-HIFU clinical system (Sonalleve V1 3.0T, Profound Medical Corp., Canada). Continuous quasi-linear and pulsed shock-wave exposures with the same time-averaged power are compared. Volumetric thermal lesions were generated by moving the focus of the array in its focal plane along discrete trajectories consisting of two or four concentric circles with a maximum radius of 4 mm. The effect of using the criteria for controlling the thermal dose during treatment and ending the sonication on the shape, volume, and exposure time of generating thermal lesion were analyzed. The acoustic field in tissue was calculated using the Westervelt equation; the temperature field was simulated with the inhomogeneous heat conduction equation; and the lesion boundary was determined according to the thermal dose threshold. In the quasi-linear mode corresponding to the clinical one, thermal diffusion leads to elongation of the lesion by a factor of 2–3 along the beam axis compared to the transverse dimension of the trajectory. The use of pulsed shock-wave exposures with switching off the inner circles of the trajectory as they reach the threshold value of the thermal dose makes it possible to significantly suppress the thermal diffusion effects in the axial direction of the beam and obtain localized thermal lesion of a given shape with a thermal ablation rate comparable to the clinical case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Physical Principles of Medical Ultrasonics, Ed. by C. R. Hill, J. C. Bamber, G. R. ter Haar (John Wiley & Sons, 2004; Fizmatlit, Moscow, 2008).

  2. L. R. Gavrilov, Focused High Intensive Ultrasound in Medicine (Fazis, Moscow, 2013) [in Russian].

    Google Scholar 

  3. M. R. Bailey, V. A. Khokhlova, O. A. Sapozhnikov, S. G. Kargl, and L. A. Crum, Acoust. Phys. 49 (4), 369 (2003).

    Article  ADS  Google Scholar 

  4. T. J. Dubinsky, C. Cuevas, M. K. Dighe, O. Kolokythas, and J. H. Hwang, AJR, Am. J. Roentgenol. 19, 191 (2008).

    Article  Google Scholar 

  5. F. Wu, Z. B. Wang, W. Z. Chen, W. Wang, Y. Gui, M. Zhang, G. Zheng, Y. Zhou, G. Xu, M. Li, C. Zhang, H. Ye, and R. Feng, Ultrason. Sonochem. 11, 149 (2004).

    Article  Google Scholar 

  6. M. O. Köhler, C. Mougenot, B. Quesson, E. J. Enholm, B. Le Bail, C. Laurent, C. T. W. Moonen, and G. J. Ehnholm, Med. Phys. 36 (8), 3521 (2009).

    Article  Google Scholar 

  7. R. Salomir, J. Palussière, F. C. Vimeux, J. A. de Zwart, B. Quesson, M. Gauchet, P. Lelong, J. Pergrale, N. Grenier, and C. T. W. Moonen, J. Magn. Reson. Imag. 12, 571 (2000).

    Article  Google Scholar 

  8. C. Mougenot, R. Salomir, J. Palussiere, N. Grenier, and C. T. W. Moonen, Magn. Reson. Med. 52, 1005 (2004).

    Article  Google Scholar 

  9. V. A. Khokhlova, A. D. Maxwell, T. Khokhlova, W. Kreider, M. Bailey, A. Partanen, N. Farr, and O. A. Sapozhnikov, in Proc. 14th Int. Symp. for Therapeutic Ultrasound (Las Vegas, 2014).

  10. P. Ramaekers, M. De Greef, J. M. M. Van Breugel, C. T. W. Moonen, and M. Ries, Phys. Med. Biol. 61, 1057 (2016).

    Article  Google Scholar 

  11. J. K. Enholm, M. O. Köhler, B. Quesson, C. Mougenot, C. T. Moonen, and S. D. Sokka, IEEE Trans. Biomed. Eng. 57 (1), 103 (2010).

    Article  Google Scholar 

  12. Y. S. Kim, B. Keserci, A. Partanen, H. Rhim, H. K. Lim, M. J. Park, and M. O. Köhler, Eur. J. Radiol. 81 (11), 3652 (2012).

    Article  Google Scholar 

  13. M. Tillander, S. Hokland, J. Koskela, H. Dam, N. P. Andersen, M. Pedersen, K. Tanderup, M. Ylihautala, and M. Köhler, Med. Phys. 43 (3), 1539 (2016).

    Article  Google Scholar 

  14. A. M. Venkatesan, A. Partanen, T. K. Pulanic, M. R. Dreher, J. Fischer, R. K. Zurawin, R. Muthupillai, S. Sokka, H. J. Nieminen, N. Sinaii, M. Merino, B. J. Wood, and P. Stratton, J. Vasc. Interv. Radiol. 23 (6), 786 (2012).

    Article  Google Scholar 

  15. S. L. Giles, G. Imseeh, I. Rivens, G. R. Ter Haar, A. Taylor, and N. M. deSouza, J. Interv. Radiol. 3 (1:1), 1 (2020).

  16. O. A. Sapozhnikov, T. D. Khokhlova, W. Kreider, A. Partanen, Y.-N. Wang, M. M. Karzova, and V. A. Khokhlova, in Proc. 19th Int. Society for Therapeutic Ultrasound (ISTU) and the European Focused Ultrasound Charitable Society (EUFUS) (Barcelona, 2019).

  17. C. Mougenot, M. O. Köhler, J. Enholm, B. Quesson, and C. Moonen, Med. Phys. 38, 272 (2011).

    Article  Google Scholar 

  18. B. Quesson, M. Merle, M. O. Kohler, C. Mougenot, S. Roujol, B. D. de Senneville, and C. T. Moonen, Med. Phys. 37 (6), 2533 (2010).

    Article  Google Scholar 

  19. J.-F. Aubry, M. Pernot, F. Marquet, M. Tanter, and M. Fink, Phys. Med. Biol. 53 (11), 2937 (2008).

    Article  Google Scholar 

  20. E. Filonenko and V. A. Khokhlova, Acoust. Phys. 47 (4), 541 (2001).

    Article  Google Scholar 

  21. V. A. Khokhlova, M. R. Bailey, J. A. Reed, B. W. Cunitz, P. J. Kaczkowski, and L. A. Crum, J. Acoust. Soc. Am. 119 (3), 1834 (2006).

    Article  ADS  Google Scholar 

  22. P. Yuldashev, S. Shmeleva, S. Ilyin, O. Sapozhnikov, L. Gavrilov, and V. Khokhlova, Phys. Med. Biol. 58 (8), 2537 (2013).

    Article  Google Scholar 

  23. V. A. Khokhlova, Focused Ultrasound Foundation Final Report (June 5, 2019).

  24. Yu. S. Andriyakhina, M. M. Karzova, P. V. Yuldashev, and V. A. Khokhlova, Acoust. Phys. 65 (2), 141 (2019).

    Article  ADS  Google Scholar 

  25. W. Kreider, P. V. Yuldashev, O. A. Sapozhnikov, N. Farr, A. Partanen, M. R. Bailey, and V. A. Khokhlova, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60 (8), 1683 (2013).

    Article  Google Scholar 

  26. F. A. Duck, Physical Properties of Tissue (Acad. Press, London, 1990).

    Google Scholar 

  27. https://itis.swiss/virtual-population/tissue-properties/ database/acoustic-properties/.

  28. P. V. Yuldashev and V. A. Khokhlova, Acoust. Phys. 57 (3), 334 (2011).

    Article  ADS  Google Scholar 

  29. M. M. Karzova, P. V. Yuldashev, O. A. Sapozhnikov, V. A. Khokhlova, B. W. Cunitz, W. Kreider, and M. R. Bailey, J. Acoust. Soc. Am. 141 (4), 2327 (2017).

    Article  ADS  Google Scholar 

  30. A. D. Maxwell, P. V. Yuldashev, W. Kreider, T. D. Khokhlova, G. R. Schade, T. L. Hall, O. A. Sapozhnikov, M. R. Bailey, and V. A. Khokhlova, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 64 (10), 1542 (2017).

    Article  Google Scholar 

  31. P. A. Pestova, M. M. Karzova, P. V. Yuldashev, W. Kreider, and V. A. Khokhlova, Acoust. Phys. 67 (3), 250 (2021).

    Article  ADS  Google Scholar 

  32. S. A. Sapareto and W. C. Dewey, Int. J. Radiat. Oncol. Biol. Phys. 10 (6), 787 (1984).

    Article  Google Scholar 

  33. X. Fan and K. Hynynen, Ultrasound Med. Biol. 22 (4), 471 (1996).

    Article  Google Scholar 

  34. Ultrasonics-Field Characterization-In Situ Exposure Estimation in Finite-Amplitude Ultrasonic Beams, document IEC/TS 61949 (2007).

  35. P. V. Yuldashev, M. M. Karzova, W. Kreider, P. B. Rosnitskiy, O. A. Sapozhnikov, and V. A. Khokhlova, IEEE Trans. Ultrason. Ferroelect. Freq. Control 68 (9), 2837 (2021).

    Article  Google Scholar 

  36. P. B. Rosnitskiy, P. V. Yuldashev, O. A. Sapozhnikov, A. D. Maxwell, W. Kreider, M. R. Bailey, and V. A. Khokhlova, IEEE Trans. Ultrason. Ferroelect. Freq. Control 64 (2), 374 (2017).

    Article  Google Scholar 

  37. M. M. Karzova, M. V. Averiyanov, O. A. Sapozhnikov, and V. A. Khokhlova, Acoust. Phys. 58 (1), 81 (2012).

    Article  ADS  Google Scholar 

  38. V. A. Khokhlova, J. B. Fowlkes, W. W. Roberts, G. R. Schade, Z. Xu, T. D. Khokhlova, T. L. Hall, A. D. Maxwell, Y. N. Wang, and C. C. Cain, Int. J. Hyperthermia 31 (2), 145 (2015).

    Article  Google Scholar 

  39. M. M. Karzova, W. Kreider, A. Partanen, O. A. Sapozhnikov, T. D. Khokhlova, P. V. Yuldashev, and V. A. Khokhlova, in Proc. 19th Int. Symp. of ISTU / 5th European Symp. of EUFUS (Barcelona, 2019), p. 235.

Download references

ACKNOWLEDGMENTS

The authors are grateful to L.R. Gavrilov for valuable comments during the discussion of the results.

Funding

The study was supported by the Russian Science Foundation, grant no. 22-72-00047.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Pestova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pestova, P.A., Karzova, M.M., Yuldashev, P.V. et al. The Use of Focused Ultrasound Beams with Shocks to Suppress Diffusion Effects in Volumetric Thermal Ablation of Biological Tissue. Acoust. Phys. 69, 448–458 (2023). https://doi.org/10.1134/S1063771023600468

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771023600468

Keywords:

Navigation