Skip to main content
Log in

Investigation of Open Cloaking of Acoustic Fields via Transformation Optics

  • PHYSICAL ACOUSTICS
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

The conventional cloak has been studied in vast space while the open cloaking is explored in a few articles and there is a dire need for further investigations in this field. The open cloaks provide a way to exchange information data from the cloaked region to outside and vice versa. In this work, we have investigated the open cloaking phenomenon in acoustic fields at an audible frequency. This study will be helpful in developing a Multiphysics open cloaking platform and cloaked will enable to transfer or prohibition of the exchange of material from one region to another.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. S. P. Efimov, Acoust. Phys. 25 (2), 234 (1979).

    Google Scholar 

  2. S. P. Efimov, Radiophys. Quantum Electron. 21 (9), 916 (1978).

    Article  ADS  Google Scholar 

  3. J. B. Pendry, D. Schurig, and D. R. Smith, Science 312 (5781), 1780 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  4. U. Leonhardt, Science 312 (5781), 1777 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  5. S. Guenneau, C. Amra, and D. Veynante, Opt. Express 20 (7), 8207 (2012).

    Article  ADS  Google Scholar 

  6. H. Chen, J. Yang, J. Zi, and C. T. Chan, Europhys. Lett. 85 (2), 24004 (2009).

    Article  ADS  Google Scholar 

  7. S. Zhang, D. A. Genov, C. Sun, and X. Zhang, Phys. Rev. Lett. 100 (12), 123002 (2008).

    Article  ADS  Google Scholar 

  8. M. Farhat, S. Guenneau, and S. Enoch, Phys. Rev. Lett. 103 (2), 024301 (2009).

    Article  ADS  Google Scholar 

  9. F. Ma, Y. Xu, and J. H. Wu, Sci. Rep. 9 (1), 1 (2019).

    Article  ADS  Google Scholar 

  10. U. Leonhardt, Nature 498 (7455), 440 (2013).

    Article  ADS  Google Scholar 

  11. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, Nat. Photon. 1 (4), 224 (2007).

    Article  ADS  Google Scholar 

  12. X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, Nat. Commun. 2 (1), 1 (2011).

    Article  Google Scholar 

  13. M. Imran, L. Zhang, and A. K. Gain, Sci. Rep. 10 (1), 1 (2020).

    Article  Google Scholar 

  14. D. P. Liu, P. J. Chen, and H. H. Huang, Sci. Rep. 8 (1), 1 (2018).

    ADS  Google Scholar 

  15. G. Klotz, N. Mallejac, S. Guenneau, and S. Enoch, Sci. Rep. 9 (1), 1 (2019).

    Article  Google Scholar 

  16. K. L. Tsakmakidis, O. Reshef, E. Almpanis, G. P. Zouros, E. Mohammadi, D. Saadat, and H. Altug, Nat. Commun. 10 (1), 1 (2019).

    Article  Google Scholar 

  17. M. Raza, Y. Liu, E. H. Lee, and Y. Ma, J. Opt. 18 (4), 044002 (2016).

    Article  ADS  Google Scholar 

  18. K. T. Lee, C. Ji, H. Iizuka, and D. Banerjee, J. Appl. Phys. 129 (23), 231101 (2021).

    Article  ADS  Google Scholar 

  19. E. K. Carlson, Physics 14, s57 (2021).

    Article  Google Scholar 

  20. Z. Basiri, M. H. Fakheri, A. Abdolali, and C. Shen, Sci. Rep. 11 (1), 1 (2021).

    Article  Google Scholar 

  21. Y. Gao, Chin. Phys. Lett. 38 (2), 020501 (2021).

    Article  ADS  Google Scholar 

  22. S. A. Cummer and D. Schurig, New J. Phys. 9 (3), 45 (2007).

    Article  ADS  Google Scholar 

  23. D. Torrent and J. Sánchez-Dehesa, New J. Phys. 10 (6), 063015 (2008).

    Article  ADS  Google Scholar 

  24. F. Gömöry, M. Solovyov, J. Šouc, C. Navau, J. Prat-Camps, and A. Sanchez, Science 335 (6075), 1466 (2012).

    Article  ADS  Google Scholar 

  25. Y. Ma, Y. Liu, M. Raza, Y. Wang, and S. He, Phys. Rev. Lett. 113 (20), 205501 (2014).

    Article  ADS  Google Scholar 

  26. A. V. Shchelokova, I. V. E. Melchakova, A. P. Slobozhanyuk, E. A. Yankovskaya, C. R. Simovski, and P. A. Belov, Phys.-Usp. 58 (2), 167 (2015).

    Article  Google Scholar 

  27. V. P. Sarin, M. P. Jayakrishnan, P. V. Vinesh, C. K. Aanandan, P. Mohanan, and K. Vasudevan, Can. J. Phys. 95 (10), 927 (2017).

    Article  ADS  Google Scholar 

  28. W. Yan, M. Yan, Z. Ruan, and M. Qiu, New J. Phys. 10 (4), 043040 (2008).

    Article  ADS  Google Scholar 

  29. H. Ma, S. Qu, Z. Xu, and J. Wang, Appl. Phys. Lett. 94 (10), 103501 (2009).

    Article  ADS  Google Scholar 

  30. T. Han, C. Qiu, and X. Tang, Appl. Phys. Lett. 97 (12), 124104 (2010).

    Article  ADS  Google Scholar 

  31. Q. Ma, F. Yang, T. Y. Jin, Z. L. Mei, and T. J. Cui, J. Opt. 18 (4), 044004 (2016).

    ADS  Google Scholar 

  32. H. Wang, W. Yang, B. He, and H. Liu, J. Comput. Phys. 426, 109944 (2021).

    Article  Google Scholar 

  33. B. Zheng, H. A. Madni, and H. Chen, in Proc. IEEE URSI Int. Symp. on Electromagnetic Theory (EMTS) (Espoo, 2016), p. 607.

  34. H. Wang, W. Yang, B. He, and H. Liu, J. Comput. Phys. 426, 109944 (2021).

    Article  Google Scholar 

  35. J. Y. Li, Y. Gao, and J. P. Huang, J. Appl. Phys. 108 (7), 074504 (2010).

    Article  ADS  Google Scholar 

  36. M. Moccia, G. Castaldi, S. Savo, Y. Sato, and V. Galdi, Phys. Rev. X 4 (2), 021025 (2014).

    Google Scholar 

  37. M. Raza, Y. Liu, and Y. Ma, J. Appl. Phys. 117 (2), 024502 (2015).

    Article  ADS  Google Scholar 

  38. G. Fujii and Y. Akimoto, Phys. Rev. E 102 (3), 033308 (2020).

    Article  ADS  Google Scholar 

  39. S. H. Tadi and B. Shokri, Waves Random Complex Media 2021, 1 (2021).

    Google Scholar 

  40. Y. Li, H. Zhang, Z. Zhang, Z. Wang, and X. Xia, AIP Adv. 10 (10), 105214 (2020).

    Article  ADS  Google Scholar 

  41. M. Raza, Mater. Res. Express 7 (5), 055802 (2020).

    Article  ADS  Google Scholar 

  42. R. Fleury and A. Alù, Progr. Electromagn. Res. 147, 171 (2014).

    Article  Google Scholar 

  43. Q. Tao and K. D. Robertson, Clin. Immunol. 109 (1), 53 (2003).

    Article  Google Scholar 

  44. Y. V. Petukhov, Acoust. Phys. 68 (2), 110 (2022).

    Article  ADS  Google Scholar 

  45. M. M. Sadeghi, Acoust. Phys. 69 (1), 1 (2023).

    Article  ADS  Google Scholar 

  46. B. Tiryakioglu and H. Ozturk, Acoust. Phys. 69 (4), 436 (2023).

    Article  ADS  Google Scholar 

  47. Y. I. Bobrovnitskii and T. M. Tomilina, Acoust. Phys. 64, 519 (2018). https://doi.org/10.1134/S1063771018040024

    Article  ADS  Google Scholar 

Download references

Funding

This work was partially supported by the Higher Education Commission Pakistan (HEC) under [grant number 7922/Balochistan/NRPU/R&D/HEC/2017].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Raza.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raza, M., Ahsan, M., Wee, M.F. et al. Investigation of Open Cloaking of Acoustic Fields via Transformation Optics. Acoust. Phys. 70, 76–81 (2024). https://doi.org/10.1134/S1063771023600444

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771023600444

Keywords:

Navigation