Skip to main content
Log in

Use of Longitudinal Critically Refracted Waves to Determine Residual and Temperature Stresses in Rails

  • PHYSICAL ACOUSTICS
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

The possibility of using longitudinal critically refracted waves for acoustic strain gauging of longitudinal residual and temperature stresses in rails is studied. The influence of stress and temperature on the propagation velocity of elastic waves in rail steel is analyzed theoretically. An algorithm is presented for determining longitudinal stress in a rail by measuring the propagation time of longitudinal critically refracted waves. The operational principle is described, and the main parameters of an acoustic strain gauge device are presented, in which a differential scheme for measuring the propagation time of longitudinal critically refracted waves is implemented. Longitudinal critically refracted waves that propagate along a rail are emitted and received from the rolling surface of a rail head using contact piezoelectric transducers fixed on the polymethylmethacrylate wedges. The results of acoustomechanical and temperature tests are presented. The measurement errors are calculated. The results of determining the level of residual welding stresses in the head of a new rail are presented. The experimental results are compared with theoretical estimates of the stresses that arise in a rail under the influence of temperature, as well as with available data in the literature on residual stresses in rails.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. V. V. Murav’ev, K. A. Tapkov, and S. V. Len’kov, Russ. J. Nondestruct. Test. 54 (10), 675 (2018). https://doi.org/10.1134/S106183091810008X

    Article  Google Scholar 

  2. V. S. Kossov, A. L. Protopopov, G. M. Volokhov, O. G. Krasnov, and V. N. Oguenko, Track Track Facil., No. 9, 23 (2022).

  3. O. A. Peregudov, K. V. Morozov, V. E. Gromov, A. M. Glezer, and Yu. F. Ivanov, Russ. Metall. 2016 (4), 371 (2016). https://doi.org/10.1134/S0036029516040182

    Article  ADS  Google Scholar 

  4. Y. Hwang, G. Kim, Y. Kim, J. Park, M. Y. Choi, and K. Kim, Appl. Sci. 11 (19), 9306 (2021). https://doi.org/10.3390/app11199306

    Article  Google Scholar 

  5. D. Xiangyu, Z. Liqiang, Y. Zujun, and X. Xining, Period. Polytech. Transp. Eng. 48 (1), 45 (2020). https://doi.org/10.3311/PPTR.12062

    Article  Google Scholar 

  6. D. Vangi and A. Virga, Exp. Mech. 47 (5), 617 (2007). https://doi.org/10.1007/s11340-006-9016-6

    Article  Google Scholar 

  7. J. Szelążek, NDT&E Int. 25 (2), 77 (1992). https://doi.org/10.1016/0963-8695(92)90497-5

    Article  Google Scholar 

  8. M. Hirao, H. Ogi, and H. Fukuoka, Res. Nondestruct. Eval. 5 (3), 211 (1994). https://doi.org/10.1080/09349849409409669

    Article  ADS  Google Scholar 

  9. V. V. Murav’ev, L. V. Volkova, V. E. Gromov, and A. M. Glezer, Russ. Metall. 2016 (10), 992 (2016). https://doi.org/10.1134/S003602951610013X

    Article  ADS  Google Scholar 

  10. V. V. Murav’ev, L. V. Volkova, A. V. Platunov, and V. A. Kulikov, Russ. J. Nondestruct. Test. 52 (7), 370 (2016). https://doi.org/10.1134/S1061830916070044

    Article  Google Scholar 

  11. A. A. Karabutov, N. B. Podymova, and E. B. Cherepetskaya, J. Appl. Mech. Tech. Phys. 58 (3), 503 (2017). https://doi.org/10.1134/S0021894417030154

    Article  ADS  Google Scholar 

  12. V. V. Muravev, K. A. Tapkov, and S. V. Lenkov, Russ. J. Nondestruct. Test. 55 (1), 8 (2019). https://doi.org/10.1134/S1061830919010078

    Article  Google Scholar 

  13. L. Sun, Z. Li, W. F. Zhu, Y. He, G. Fan, W. Fang, and W. Shao, Adv. Mech. Eng. 13 (8), 1 (2021). https://doi.org/10.1177/16878140211041432

    Article  Google Scholar 

  14. N. Ye. Nikitina, Acoustoelasticity – Experience of Practical Use (TALAM, Nizhny Novgorod, 2005) [in Russian].

    Google Scholar 

  15. D. S. Hughes and J. L. Kelly, Phys. Rev. 92 (5), 1145 (1953). https://doi.org/10.1103/PhysRev.92.1145

    Article  ADS  Google Scholar 

  16. A. Y. Ivochkin, A. A. Karabutov, M. L. Lyamshev, I. M. Pelivanov, U. Rohatgi, and M. Subudhi, Acoust. Phys. 53 (4), 471 (2007). https://doi.org/10.1134/S1063771007040070

    Article  ADS  Google Scholar 

  17. A. N. Zharinov, A. A. Karabutov, E. A. Mironova, S. N. Pichkov, E. V. Savateeva, V. A. Simonova, and D. N. Shishulin, Acoust. Phys. 65 (3), 307 (2019). https://doi.org/10.1134/S1063771019030114

    Article  ADS  Google Scholar 

  18. D. M. Egle and D. E. Bray, J. Acoust. Soc. Am. 60 (3), 741 (1976). https://doi.org/10.1121/1.381146

    Article  ADS  Google Scholar 

  19. E. Schneider, in Structural and Residual Stress Analysis by Nondestructive Methods, Ed. by V. Hauk (Elsevier Science B.V., Amsterdam, 1997), p. 522. https://doi.org/10.1016/B978-044482476-9/50018-9.

  20. V. A. Anisimov, B. I. Katorgin, A. N. Kutsenko, et al., in Nondestructive Control: Handbook, Ed. by V. V. Klyuev (Mashinostroenie, Moscow, 2006), 4 [in Russian].

    Google Scholar 

  21. D. E. Bray and R. K. Stanley, Nondestructive Evaluation: a Tool in Design, Manufacturing and Service (CRC Press, Boca Raton, 1997). https://doi.org/10.1201/9781315272993.

  22. K. V. Kurashkin, A. G. Kirillov, and R. V. Belyaev, Instrum. Exp. Tech., No. 4, 156 (2023).

  23. J. Szelążeek, J. Nondestruct. Eval. 32 (2), 188 (2013). https://doi.org/10.1007/s10921-013-0172-1

    Article  Google Scholar 

  24. H. Liu, Y. Li, T. Li, et al., Appl. Acoust. 141, 178 (2018). https://doi.org/10.1016/j.apacoust.2018.07.017

    Article  Google Scholar 

  25. A. I. Korobov, Y. A. Brazhkin, and W. Ning, Acoust. Phys. 51 (5), 571 (2005). https://doi.org/10.1134/1.2042577

    Article  ADS  Google Scholar 

  26. K. V. Kurashkin, Acoust. Phys. 65 (3), 316 (2019). https://doi.org/10.1134/S1063771019030047

    Article  ADS  Google Scholar 

  27. N. P. Aleshin, V. E. Bely, A. H. Vopilkin, et al., Methods for Acoustic Testing of Metals (Mashinostroenie, Moscow, 1989) [in Russian].

    Google Scholar 

Download references

Funding

The study was carried out within the state assignment of the Institute of Applied Physics, Russian Academy of Sciences, for conducting fundamental scientific research for 2021–2023, topic no. 0030-2021-0025, registration number in EGISU R&D 121071600007-3. The experimental sample of an acoustic strain gauge was created under agreement no. 45-358/707-903/2021 between the Institute of Applied Physics, Russian Academy of Science, and JSC SPA POLET of June 23, 2021, registration no. at the Unified State Institute of Public Health Sciences 122081000081-7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Kurashkin.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurashkin, K.V., Kirillov, A.G. & Gonchar, A.V. Use of Longitudinal Critically Refracted Waves to Determine Residual and Temperature Stresses in Rails. Acoust. Phys. 70, 51–57 (2024). https://doi.org/10.1134/S1063771023600365

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771023600365

Keywords:

Navigation