Abstract
A mode-matching analysis of infinite cylindrical duct with a partial absorbing internal surface is considered. The solution for the field terms are determined in form of eigenmodes which are matched across the boundary of each junction discontinuity. Numerical results are performed to show the influence of the different parameters such as waveguide radius, length of the lined part and acoustic absorbing lining on the propagation phenomenon. The method is also compared with the Wiener–Hopf technique which is more difficult to implement and very good corroboration is observed.
REFERENCES
B. Tiryakioglu, Acta Acust. Acust. 105 (4), 591 (2019). https://doi.org/10.3813/AAA.919340
B. Tiryakioglu, J. Eng. Math. 122 (1), 17 (2020). https://doi.org/10.1007/s10665-020-10042-x
L. Huang, J. Acoust. Soc. Am. 112 (5), 2014 (2002). https://doi.org/10.1121/1.1508778
H. Ozturk, TWMS J. Appl. Eng. Math. 10 (3), 690 (2020)
G. Cinar, H. Ozturk, and O. Y. Cinar, Math. Method Appl. Sci. 34 (2), 220 (2011). https://doi.org/10.1002/mma.1351
R. F. Huang and D. M. Zhang, Pier 67, 205 (2007). https://doi.org/10.2528/PIER06083103
S. Shafique, M. Afzal, and R. Nawaz, Can. J. Phys. 95 (6), 581 (2017). https://doi.org/10.1139/cjp-2016-0801
P. M. Morse, J. Acoust. Soc. Am. 11 (2), 205 (1939). https://doi.org/10.1121/1.1916024
L. Cremer, Acustica 3, 249 (1953).
A. D. Lapin, Sov. Phys. Acoust. 21 (3), 215 (1975).
A. D. Rawlins, Proc. R. Soc. London A 361, 65 (1978). https://doi.org/10.1098/rspa.1978.0092
K. S. Peat, J. Sound Vib. A 150 (1), 101 (1978). https://doi.org/10.1016/0022-460X(91)90404-8
B. Tiryakioglu and A. Demir, Arch. Acoust. 44 (2), 239 (2019). https://doi.org/10.24425/aoa.2019.128487
M. Hassan, M. H. Meylan, A. Bashir, and M. Sumbul, Math. Method Appl. Sci. 39 (11), 3043 (2016). https://doi.org/10.1002/mma.3751
M. Hassan and A. Bashir, Can. J. Phys. 96 (2), 165 (2017). https://doi.org/10.1139/cjp-2017-0045
A. Khalid, S. Younas, I. Khan, R. Manzoor, R. Nawaz, and E. M. Sherif, J. Interdiscip. Math. 22 (7), 1095 (2020). https://doi.org/10.1080/09720502.2019.1706888
A. Demir and A. Buyukaksoy, Int. J. Eng. Sci. 41 (20), 2411 (2003). https://doi.org/10.1016/S0020-7225(03)00240-4
A. Demir and A. Buyukaksoy, Int. J. Eng. Sci. 45 (3), 398 (2005). https://doi.org/10.1016/j.ijengsci.2004.12.003
R. Mittra and S. W. Lee, Analytical Techniques in the Theory of Guided Waves (Macmillan Co., 1971).
C. Y. Lo and R. V. Churchill, Boundary Value Problems (World Sci., 2000), Chapter 7.
A. Isikyer and A. Demir, Bull. Tech. Univ. Istanbul 54 (5), 46 (2007).
A. Demir and A. Buyukaksoy, Acta Acust. Acust. 89 (4), 578 (2003).
J. W. Brown and R. V. Churchill, Fourier Series and Boundary Value Problems, 5th ed. (McGraw-Hill, Inc., 1993), Chapter 7.
N. Peake and I. D. Abrahams, Wave Motion 92, 102407 (2020). https://doi.org/10.1016/j.wavemoti.2019.102407
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
The authors declare that they have no conflicts of interest.
Rights and permissions
About this article
Cite this article
Tiryakioglu, B., Ozturk, H. Mode-Matching Analysis for Sound Propagation in a Cylindrical Duct with a Partial Lining. Acoust. Phys. 69, 436–441 (2023). https://doi.org/10.1134/S1063771023600274
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1063771023600274