Skip to main content
Log in

Mode-Matching Analysis for Sound Propagation in a Cylindrical Duct with a Partial Lining

  • CLASSICAL PROBLEMS OF LINEAR ACOUSTICS AND WAVE THEORY
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

A mode-matching analysis of infinite cylindrical duct with a partial absorbing internal surface is considered. The solution for the field terms are determined in form of eigenmodes which are matched across the boundary of each junction discontinuity. Numerical results are performed to show the influence of the different parameters such as waveguide radius, length of the lined part and acoustic absorbing lining on the propagation phenomenon. The method is also compared with the Wiener–Hopf technique which is more difficult to implement and very good corroboration is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

REFERENCES

  1. B. Tiryakioglu, Acta Acust. Acust. 105 (4), 591 (2019). https://doi.org/10.3813/AAA.919340

    Article  Google Scholar 

  2. B. Tiryakioglu, J. Eng. Math. 122 (1), 17 (2020). https://doi.org/10.1007/s10665-020-10042-x

    Article  MathSciNet  Google Scholar 

  3. L. Huang, J. Acoust. Soc. Am. 112 (5), 2014 (2002). https://doi.org/10.1121/1.1508778

    Article  ADS  Google Scholar 

  4. H. Ozturk, TWMS J. Appl. Eng. Math. 10 (3), 690 (2020)

    Google Scholar 

  5. G. Cinar, H. Ozturk, and O. Y. Cinar, Math. Method Appl. Sci. 34 (2), 220 (2011). https://doi.org/10.1002/mma.1351

    Article  ADS  Google Scholar 

  6. R. F. Huang and D. M. Zhang, Pier 67, 205 (2007). https://doi.org/10.2528/PIER06083103

    Article  Google Scholar 

  7. S. Shafique, M. Afzal, and R. Nawaz, Can. J. Phys. 95 (6), 581 (2017). https://doi.org/10.1139/cjp-2016-0801

    Article  ADS  Google Scholar 

  8. P. M. Morse, J. Acoust. Soc. Am. 11 (2), 205 (1939). https://doi.org/10.1121/1.1916024

    Article  ADS  Google Scholar 

  9. L. Cremer, Acustica 3, 249 (1953).

    Google Scholar 

  10. A. D. Lapin, Sov. Phys. Acoust. 21 (3), 215 (1975).

    ADS  Google Scholar 

  11. A. D. Rawlins, Proc. R. Soc. London A 361, 65 (1978). https://doi.org/10.1098/rspa.1978.0092

    Article  ADS  Google Scholar 

  12. K. S. Peat, J. Sound Vib. A 150 (1), 101 (1978). https://doi.org/10.1016/0022-460X(91)90404-8

  13. B. Tiryakioglu and A. Demir, Arch. Acoust. 44 (2), 239 (2019). https://doi.org/10.24425/aoa.2019.128487

    Article  Google Scholar 

  14. M. Hassan, M. H. Meylan, A. Bashir, and M. Sumbul, Math. Method Appl. Sci. 39 (11), 3043 (2016). https://doi.org/10.1002/mma.3751

    Article  Google Scholar 

  15. M. Hassan and A. Bashir, Can. J. Phys. 96 (2), 165 (2017). https://doi.org/10.1139/cjp-2017-0045

    Article  ADS  Google Scholar 

  16. A. Khalid, S. Younas, I. Khan, R. Manzoor, R. Nawaz, and E. M. Sherif, J. Interdiscip. Math. 22 (7), 1095 (2020). https://doi.org/10.1080/09720502.2019.1706888

    Article  Google Scholar 

  17. A. Demir and A. Buyukaksoy, Int. J. Eng. Sci. 41 (20), 2411 (2003). https://doi.org/10.1016/S0020-7225(03)00240-4

    Article  Google Scholar 

  18. A. Demir and A. Buyukaksoy, Int. J. Eng. Sci. 45 (3), 398 (2005). https://doi.org/10.1016/j.ijengsci.2004.12.003

    Article  Google Scholar 

  19. R. Mittra and S. W. Lee, Analytical Techniques in the Theory of Guided Waves (Macmillan Co., 1971).

    MATH  Google Scholar 

  20. C. Y. Lo and R. V. Churchill, Boundary Value Problems (World Sci., 2000), Chapter 7.

    Book  Google Scholar 

  21. A. Isikyer and A. Demir, Bull. Tech. Univ. Istanbul 54 (5), 46 (2007).

    Google Scholar 

  22. A. Demir and A. Buyukaksoy, Acta Acust. Acust. 89 (4), 578 (2003).

    Google Scholar 

  23. J. W. Brown and R. V. Churchill, Fourier Series and Boundary Value Problems, 5th ed. (McGraw-Hill, Inc., 1993), Chapter 7.

    Google Scholar 

  24. N. Peake and I. D. Abrahams, Wave Motion 92, 102407 (2020). https://doi.org/10.1016/j.wavemoti.2019.102407

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Tiryakioglu.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiryakioglu, B., Ozturk, H. Mode-Matching Analysis for Sound Propagation in a Cylindrical Duct with a Partial Lining. Acoust. Phys. 69, 436–441 (2023). https://doi.org/10.1134/S1063771023600274

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771023600274

Keywords:

Navigation