Skip to main content
Log in

The Sommerfeld Integral in Problems of Simulating the Diffraction of Acoustic Waves Using a Triangular Lattice

  • CLASSICAL PROBLEMS OF LINEAR ACOUSTICS AND WAVE THEORY
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

Analytical solutions are obtained for two problems for a discrete analogue of the Helmholtz equation on a triangular lattice: (1) the problem of radiation from a point source on a plane; (2) the problem of diffraction on a half-line with Dirichlet boundary conditions. It is shown that in these problems, the complete field can be represented as an integral of an algebraic function over a family of contours located on some complex manifold. The solution to the first problem is found as an integral of some differential form over this manifold, and the asymptotics of the far field for this solution is obtained. The second problem is solved using an analogue of the Sommerfeld integral. It is checked that the obtained solution coincides with the solution of this problem by the Wiener–Hopf method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.

REFERENCES

  1. A. Sommerfeld, Optik (Dieterichsche Verlagsbuchhandlung, 1950; Inostrannaya Literatura, Moscow, 1953).

  2. G. D. Malyuzhinets, Dokl. Akad. Nauk SSSR 3, 752 (1985).

    Google Scholar 

  3. B. A. Samokish, D. V. Dement’ev, V. P. Smyshlyaev, and V. M. Babich, SIAM J. Appl. Math. 60 (2), 536 (2000).

    Article  MathSciNet  Google Scholar 

  4. V. M. Babich, M. A. Lyalinov, and V. E. Grikurov, Sommerfeld-Malyuzhinets Method in Diffraction Theory (St. Petersburg State Univ., St. Petersburg, 2003) [in Russian].

    Google Scholar 

  5. A. M. Kosevich, The Crystal Lattice: Phonons, Solitons, Dislocations, Superlattices (John Wiley Sons, 2006).

    Google Scholar 

  6. J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups (Springer Sci. Business Media, 2013), Vol. 290.

    Google Scholar 

  7. S.-Y. Yu, Q. Wang, L.-Y. Zheng, C. He, X.-P. Liu, M.-H. Lu, and Y.-F. Chen, Appl. Phys. Lett. 106 (15), 151906 (2015).

    Article  ADS  Google Scholar 

  8. Yu. I. Bobrovnitskii, T. M. Tomilina, B. N. Bakhtin, A. S. Grebennikov, Sh. A. Asfandiyarov, I. A. Karpov, and A. A. Kim, Acoust. Phys. 66 (3), 324 (2020).

    Article  ADS  Google Scholar 

  9. J. Poblet-Puig, V. Yu. Valyaev, and A. V. Shanin, Math. Models Comput. Simul. 6 (2), 172 (2014).

    Article  MathSciNet  Google Scholar 

  10. J. Poblet-Puig and A. V. Shanin, Acoust. Phys. 64 (2), 252 (2018).

    Article  ADS  Google Scholar 

  11. L. I. Slepyan, Models and Phenomena in Fracture Mechanics (Springer Science Business Media, 2012).

    MATH  Google Scholar 

  12. P. A. Martin, Wave Motion 43 (7), 619 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  13. M. Berciu, J. Phys. A: Math. Theor. 42 (39), 395207 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  14. J. M. Arnold, in Proc. Int. Conf. on Electromagnetics in Advanced Applications (ICEAA) (Verona, 2017).

  15. T. Morita and T. Horiguchi, J. Math. Phys. 12 (6), 981 (1971).

    Article  ADS  Google Scholar 

  16. J. Cserti, Am. J. Phys. 12 (6), 981 (1971).

    Google Scholar 

  17. B. L. Sharma, SIAM J. Appl. Math. 75 (3), 1171 (2015).

    Article  MathSciNet  Google Scholar 

  18. B. L. Sharma, SIAM J. Appl. Math. 75 (4), 1915 (2015).

    Article  MathSciNet  Google Scholar 

  19. B. L. Sharma, Int. J. Solids Struct. 80, 465 (2016).

    Article  Google Scholar 

  20. A. V. Shanin and A. I. Korolkov, Wave Motion 97, 102606 (2020).

    Article  MathSciNet  Google Scholar 

  21. A. V. Shanin and A. I. Korolkov, Q. Appl. Math. 80, 277 (2022).

    Article  Google Scholar 

  22. S. S. Chern, Complex Manifolds without Potential Theory (Van Nostrand Reinhold, New York, 1967; Inostrannaya literature, Moscow, 1961).

  23. B. V. Shabat, Introduction to Complex Analysis (Lan’, St. Petersburg, 2004), Part 2 [in Russian].

  24. A. N. Tikhonov, A. B. Vasil’eva, and A. G. Sveshnikov, Differential Equations. Course of Higher Mathematics and Mathematical Physics (Fizmatlit, Moscow, 2002) [in Russian].

    Google Scholar 

  25. S. Steven, Hist. Math. 19 (4), 385 (1992).

    Article  Google Scholar 

  26. A. G. Sveshnikov, A. N. Bogolyubov, and V. V. Kravtsov, Lectures on Mathematical Physics (MSU, Moscow, 2004) [in Russian].

    MATH  Google Scholar 

  27. A. Hurwitz and R. Courant, Funktionentheorie (Springer-Verlag, Berlin, Goettingen, Heidelberg, New York, 1964; Nauka, Moscow, 1968).

Download references

Funding

The study was supported by the Russian Foundation for Basic Research (project no. 19-29-06048).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. I. Makarov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makarov, O.I., Shanin, A.V. & Korolkov, A.I. The Sommerfeld Integral in Problems of Simulating the Diffraction of Acoustic Waves Using a Triangular Lattice. Acoust. Phys. 69, 143–158 (2023). https://doi.org/10.1134/S1063771023600080

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771023600080

Keywords:

Navigation