Skip to main content
Log in

Improvement of Methods for Studying the Electrophysicala Viscous Properties of Liquids

  • PHYSICAL ACOUSTICS
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

To control the physical properties of polar and nonpolar liquid media, the parameters of model systems based on paraffin and silicone oils, as well as glycerin, were measured using electrophysical and acoustoelectric methods. Electrophysical studies were performed with an Agilent E4980A LCR meter and a measuring cell consisting of an Eppendorf tube and two coaxial nickel electrodes forming a cylindrical capacitor. The permittivity of the liquid was determined from the formula for the capacitor. For the acoustic part of the problem, ST,X-quartz was used as the piezoelectric plate, on which a fluoroplastic cell for liquid was placed. The measurements were carried out in three stages: measurement of the phase and amplitude of the acoustic wave (i) without contact with the liquid, (ii) in contact with a pure test liquid, and (iii) in contact with the test liquid with a filler. Microparticles of pharmaceutical activated carbon and the surfactant sorbitan monooleate were used as fillers. The viscosity of the suspensions was determined from the difference between the attenuation of an acoustic wave in the presence of the pure liquid and liquid with filler.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. S. K. Das, S. U. S. Choi, W. H. Yu, and T. Pradeep, Nanofluids: Science and Technology (John Wiley & Sons, 2007).

    Book  Google Scholar 

  2. F. Zhu, B. Wang, Z. Qian, I. Kuznetsova, and T. Ma, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 67 (4), 855 (2019). https://doi.org/10.1109/TUFFC.2019.2954745

    Article  Google Scholar 

  3. I. A. Borodina, B. D. Zaitsev, and A. A. Teplykh, Ultrasonics 91, 62 (2018). https://doi.org/10.1016/j.ultras.2018.07.017

    Article  Google Scholar 

  4. C. Croenne, J. O. Vasseur, O. B. Matar, A. C. Hladky-Hennion, and B. Dubus, J. Appl. Phys. 126 (14), 145108 (2019). https://doi.org/10.1063/1.5110869

    Article  ADS  Google Scholar 

  5. J. Filipiak and P. Marc, Sens. Actuators A 323, 112653 (2021).

    Article  Google Scholar 

  6. S. G. Joshi, B. D. Zaitsev, I. E. Kuznetsova, and A. S. Kuznetsova, J. Commun. Technol. Electron. 50 (6), 647 (2005).

    Google Scholar 

  7. L. I. Kazakov, Acout. Phys. 64 (3), 320 (2018). https://doi.org/10.1134/S1063771018030090

    Article  Google Scholar 

  8. F. L. Guo and R. Sun, Int. J. Solids Struct. 45 (13), 3699 (2008). https://doi.org/10.1016/j.ijsolstr.2007.09.018

    Article  Google Scholar 

  9. S. Kobayashi and J. Kondoh, Sensors 20 (8), 2184 (2020). https://doi.org/10.3390/s20082184

    Article  ADS  Google Scholar 

  10. L. I. Kazakov, Acout. Phys. 66 (4), 344 (2020). https://doi.org/10.1134/S1063771020020037

    Article  Google Scholar 

  11. W. Y. Wang, C. Zhang, Z. T. Zhang, Y. Liu, and G. P. Feng, Appl. Phys. Lett. 93 (24), 242906 (2008). https://doi.org/10.1063/1.3050538

    Article  ADS  Google Scholar 

  12. L. F. Qin, Q. M. Chen, H. B. Cheng, Q. Chen, J. F. Li, and Q. M. Wang, J. Appl. Phys. 110 (9), 094511 (2011). https://doi.org/10.1063/1.3657781

    Article  ADS  Google Scholar 

  13. A. V. Anisimkin, B. G. Pokusaev, D. A. Skladnev, V. V. Sorokin, and D. V. Tyupa, Acout. Phys. 62 (6), 754 (2016). https://doi.org/10.1134/S1063771016060014

    Article  Google Scholar 

  14. A. V. Minakov, M. I. Pryazhnikov, B. B. Damdinov, and I. V. Nemtsev, Acout. Phys. 68 (2), 155 (2022). https://doi.org/10.1134/S1063771022020051

    Article  Google Scholar 

  15. J. Kondoh, K. Nakayama, and I. Kuznetsova, Sens. Actuators A 325, 112503 (2021).

    Article  Google Scholar 

  16. B. R. Akhmetov and A. V. Vakhin, Acout. Phys. 64 (5), 567 (2018). https://doi.org/10.1134/S1063771018050019

    Article  Google Scholar 

  17. M. D. Tomchenko, J. Low Temp. Phys. 46 (5), 490 (2020). https://doi.org/10.1063/10.0001053

    Article  Google Scholar 

  18. B. D. Zaitsev, A. A. Teplykh, I. A. Borodina, I. E. Kuznetsova, and E. Verona, Ultrasonics 80, 96 (2017). https://doi.org/10.1016/j.ultras.2017.05.003

    Article  Google Scholar 

  19. I. E. Kuznetsova, B. D. Zaitsev, E. P. Seleznev, and E. Verona, Ultrasonics 70, 34 (2016). https://doi.org/10.1016/j.ultras.2016.04.016

    Article  Google Scholar 

  20. Y. Y. Pu, N. O’Shea, S. A. Hogan, and J. T. Tobin, J. Food Eng. 277, 109917 (2020). https://doi.org/10.1016/j.jfoodeng.2020.109917

    Article  Google Scholar 

  21. Ya. Yu. Akhadov, Dielectric Properties of Pure Liquids (Moscow Aviation Institute, Moscow, 1999) [in Russian].

    Google Scholar 

  22. A. S. Dukhin and P. J. Goetz, J. Electroanal. Chem. 588 (1), 44 (2006). https://doi.org/10.1016/j.jelechem.2005.12.001

    Article  Google Scholar 

  23. Q. Guo, V. Singh, and S. H. Behrens, Langmuir 26 (5), 3203 (2010). https://doi.org/10.1021/la903182e

    Article  Google Scholar 

  24. A. Chattopadhyay and P. Dhar, J. Appl. Phys. 125 (3), 034103 (2019). https://doi.org/10.1063/1.5079327

    Article  ADS  Google Scholar 

  25. V. I. Anisimkin and N. V. Voronova, Ultrasonics 116, 106496 (2021). https://doi.org/10.1016/j.ultras.2021.106496

    Article  Google Scholar 

  26. R. C. Weast, M. J. Astle, and W. H. Beyer, Chemical Rubber Company Handbook of Chemistry and Physics, 66th ed. (Chemical Rubber, Boca Raton, FL, 1985), p. D232.

    Google Scholar 

Download references

Funding

The study was supported by the Russian Science Foundation (grant no. 21-49-00062, https://rscf.ru/project/21-49-00062).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. S. Shamsutdinova, V. I. Anisimkin, A. S. Fionov, A. V. Smirnov, V. V. Kolesov or I. E. Kuznetsova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shamsutdinova, E.S., Anisimkin, V.I., Fionov, A.S. et al. Improvement of Methods for Studying the Electrophysicala Viscous Properties of Liquids. Acoust. Phys. 69, 87–92 (2023). https://doi.org/10.1134/S1063771022700531

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771022700531

Keywords:

Navigation