Skip to main content
Log in

Estimation of the Thickness Profile of a Human Skull Phantom by Ultrasound Methods Using a Two-Dimensional Array

  • ACOUSTIC SIGNALS PROCESSING. COMPUTER SIMULATION
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

The paper presents the results of evaluating the thickness profile of a skull phantom using a two-dimensional ultrasound array consisting of piezoelectric elements with a center frequency of 2.1 MHz. Two pulse-echo ultrasound methods were used in the experiment: the A-mode elementwise measurements and scanning with a focused probing beam created by the entire array using delay-and-sum (DAS) beamforming. The obtained thickness profiles are compared with the reference thickness profile obtained using X-ray computed tomography. It was shown that ultrasound DAS beamforming with a focused probing beam makes it technically possible to estimate the thickness profile of the skull phantom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

REFERENCES

  1. S. Purkayastha and F. Sorond, Semin. Neurol. 32 (4), 411 (2012).

    Article  Google Scholar 

  2. D. Antipova, L. Eadie, A. S. Macaden, and P. Wilson, Ultrasound J. 11 (29), 1 (2019).

  3. S. V. Baikov, A. M. Molotilov, and V. D. Svet, Acoust. Phys. 49 (3), 276 (2003).

    Article  ADS  Google Scholar 

  4. S. V. Baykov, L. V. Babin, A. M. Molotilov, S. I. Neiman, V. V. Riman, V. D. Svet, and A. I. Selyanin, Acoust. Phys. 49 (4), 389 (2003).

    Article  ADS  Google Scholar 

  5. G. T. Clement, J. Sun, T. Giesecke, and K. Hynynen, Phys. Med. Biol. 45 (12), 3707 (2000).

    Article  Google Scholar 

  6. M. Pernot, J.-F. Aubry, M. Tanter, J.-L. Thomas, and M. Fink, Phys. Med. Biol. 48 (16), 2577 (2003).

    Article  Google Scholar 

  7. A. Wydra, E. Malyarenko, K. Shapoori, and R. Gr. Maev, Phys. Med. Biol. 58 (4), 1083 (2013).

    Article  Google Scholar 

  8. V. Perrot, M. Polichetti, F. Varray, and D. Garcia, Ultrasonics 111, 106309 (2021).

    Article  Google Scholar 

  9. A. Wydra and R. Gr. Maev, Phys. Med. Biol. 58 (22), N303 (2013).

    Article  Google Scholar 

  10. M. Bakaric, P. Miloro, A. Javaherian, B. T. Cox, B. E. Treeby, and M. D. Brown, J. Acoust. Soc. Am. 150 (4), 2798 (2021).

    Article  ADS  Google Scholar 

  11. L. I. Gil’fanova, S. A. Tsysar’, P. V. Yuldashev, and V. D. Svet, Uch. Zap. Fiz. Fak. Mosk. Univ., No. 4, 154322 (2015).

  12. S. A. Tsysar’, D. A. Nikolaev, and O. A. Sapozhnikov, Acoust. Phys. 67 (3), 320 (2021).

    Article  ADS  Google Scholar 

  13. C. R. Hill, J. C. Bamber, and G. R. ter Haar, Physical Principles of Medical Ultrasonics (John Wiley & Sons, 2004; Fizmatlit, Moscow, 2008).

Download references

Funding

The study was supported by the Russian Science Foundation (grant no. 19-12-00148) and by the Scientific and Educational School of Moscow State University “Photonic and Quantum Technologies: Digital Medicine.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Asfandiyarov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asfandiyarov, S.A., Rosnitskiy, P.B., Tsysar, S.A. et al. Estimation of the Thickness Profile of a Human Skull Phantom by Ultrasound Methods Using a Two-Dimensional Array. Acoust. Phys. 69, 112–118 (2023). https://doi.org/10.1134/S106377102270004X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377102270004X

Keywords:

Navigation