Skip to main content
Log in

Experimental Investigations of the Influence of 3D Printing at 100% Filling on the Elastic Properties of PLA Polymer Filament Samples

  • NONLINEAR ACOUSTICS
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

The article presents the results of experimental studies of how 3D printing with 100% filling influences the elastic properties of PLA filament polymer samples. The static and Thurston–Brugger methods simultaneously measure the dependence of strain and the relative change in the velocity of elastic waves on the applied mechanical stress (up to failure) for the initial and 3D-printed samples of the PLA polymer. Based on the measurement results, the linear and nonlinear Young’s moduli and second-order acoustic nonlinear parameter are calculated. It has been established that 3D printing leads to a deterioration in the strength and plastic characteristics of PLA. A different behavior of the nonlinear parameters of the initial and 3D-printed PLA samples in the loading and unloading region was revealed, associated with a change in the internal structure of the sample caused by 3D printing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. C. Schumacher, B. Bickel, J. Rys, S. Marschner, C. Daraio, and M. Gross, ACM Trans. Graph. 34, 136:1 (2015).

    Article  Google Scholar 

  2. J. Cantrell, S. Rohde, D. Damiani, R. Gurnani, L. DiSandro, J. Anton, A. Young, A. Jerez, D. Steinbach, C. Kroese, and P. Ifju, Adv. Opt. Methods Exp. Mech. 3, 89 (2017).

    Google Scholar 

  3. Y. Kao, Y. Zhang, J. Wang, and B. L. Tai, J. Manuf. Sci. Eng. 139, 041006 (2016).

    Article  Google Scholar 

  4. R. Zou, Y. Xia, S. Liu, P. Hu, W. Hou, Q. Hu, and C. Shan, Compos. Eng. B 99, 506 (2016).

    Article  Google Scholar 

  5. V. A. Boshnyak and A. V. Yazykov, Nauka Obraz. MGTU im. N. E. Baumana, No. 12, 311 (2016).

    Google Scholar 

  6. J. H. Martin, B. D. Yahata, J. M. Hundley, J. A. Mayer, T. A. Schaedler, and T. M. Pollock, Nature 549, 365 (2017).

    Article  ADS  Google Scholar 

  7. C. Ma, Y. Dong, and C. Ye, Procedia CIRP 45, 319 (2016).

    Article  Google Scholar 

  8. C. Schulze, M. Weinmann, C. Schweigel, O. Keßler, and R. Bader, Materials (Basel) 11, 13 (2018).

    Article  Google Scholar 

  9. Yu. A. Lantsova and T. G. Pavlenko, in Proc. 11th All-Russian Youth Conf. for Young Scientists, Students and Scholars with International Participation Physics and Modern Technologies in Agroindustrial Complex, Orel, Feb. 19, 2020 (Kartush, Orel, 2020), p. 45 [in Russian].

  10. J. Wang, A. Goyanes, S. Gaisford, and A. W. Basit, Int. J. Pharm. 503, 207 (2016).

    Article  Google Scholar 

  11. B. Msallem, N. Sharma, S. Cao, F. S. Halbeisen, H. F. Zeilhofer, and F. M. Thieringer, J. Clin. Med. 9, 817 (2020).

    Article  Google Scholar 

  12. L. E. Murr, E. Martinez, K. N. Amato, S. M. Gaytan, J. Hernandez, D. A. Ramirez, P. W. Shindo, F. M. Ryan, and R. B. Wicker, J. Mater. Res. Technol. 1, 42 (2012).

    Article  Google Scholar 

  13. M. Doshi, A. Mahale, S. K. Singh, and S. Deshmukh, Mater. Today: Proc. 50, 2269 (2021).

    Article  Google Scholar 

  14. S. Wickramasinghe, T. Do, and P. Tran, Polymers 12, 1529 (2020).

    Article  Google Scholar 

  15. L. T. Lim, R. Auras, and M. Rubino, Prog. Polym. Sci. 33, 820 (2008).

    Article  Google Scholar 

  16. T. Nakatsuka, Fujikura Tech. Rev., p. 39 (2011).

  17. S. Farah, D. G. Anderson, and R. Langer, Adv. Drug Delivery 107, 367 (2016).

    Article  Google Scholar 

  18. F. L. La Mantia and M. Morreale, Appl. Sci. Manuf. 42, 579 (2011).

    Article  Google Scholar 

  19. K. Hamad, M. Kaseem, M. Ayyoob, J. Joo, and F. Deri, Progr. Polym. Sci. 85, 83 (2018).

    Article  Google Scholar 

  20. J. de Ciurana, L. Serenó, and E. Vallès, Procedia CIRP 5, 152 (2013).

    Article  Google Scholar 

  21. M. Fernandez-Vicente, W. Calle, S. Ferrandiz, and A. Conejero, 3D Print. Addit. Manuf. 3, 183 (2016).

    Article  Google Scholar 

  22. B. Wittbrodt and J. M. Pearce, Addit. Manuf. 8, 110 (2015).

    Google Scholar 

  23. G. Zhao, F. P. C. Gomes, H. Marway, M. R. Thompson, and Zh. Zhu, Macromol. Chem. Phys. 221, 1900475 (2020).

    Article  Google Scholar 

  24. A. Lanzotti, M. Grasso, G. Staiano, and M. Martorelli, Rapid Prototyping J. 21, 604 (2015).

    Article  Google Scholar 

  25. M. F. Afrose, S. H. Masood, P. Iovenitti, M. Nikzad, and I. Sbarski, Progr. Addit. Manuf. 1, 21 (2016).

    Article  Google Scholar 

  26. A. A. Ahmed and L. Susmel, Procedia Struct. Integr. 3, 407 (2017).

    Google Scholar 

  27. C. Oztan, R. Karkkainen, M. Fittipaldi, G. Nygren, L. Roberson, M. Lane, and E. Celik, J. Compos. Mater. 53, 271 (2019).

    Article  ADS  Google Scholar 

  28. N. Parker, M. L. Mather, S. P. Morgan, and M. J. Povey, Biomed. Mater. 5, 055004 (2010).

    Article  ADS  Google Scholar 

  29. H.-C. Wua, F.-W. Shenb, X. Honga, W. V. Changa, and H. Winet, Biomaterials 24, 3871 (2003).

    Article  Google Scholar 

  30. A. Antoniou, N. Evripidou, M. Giannakou, G. Constantinides, and C. Damianou, J. Acoust. Soc. Am. 149, 2854 (2021).

    Article  ADS  Google Scholar 

  31. A. I. Korobov, A. I. Kokshaiskii, E. S. Mikhalev, N. I. Odina, and N. V. Shirgina, Acoust. Phys. 67 (4), 375 (2021).

    Article  ADS  Google Scholar 

  32. A. I. Korobov, A. I. Kokshaiskii, E. S. Mikhalev, N. I. Odina, and N. V. Shirgina, Akust. Zh. 69 (2023) (in press).

  33. S. Saito, AIP Conf. Proc. 1022, 561 (2008).

    Article  ADS  Google Scholar 

  34. I. Solodov, K. Pfleiderer, H. Gerhard, and G. Busse, Ultrasonics 42, 1011 (2004).

    Article  Google Scholar 

Download references

Funding

The study was supported by a grant from the Russian Science Foundation (project no. 19-12-00098).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Korobov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volodarskii, A.B., Kokshaisky, A.I., Odina, N.I. et al. Experimental Investigations of the Influence of 3D Printing at 100% Filling on the Elastic Properties of PLA Polymer Filament Samples. Acoust. Phys. 69, 442–447 (2023). https://doi.org/10.1134/S1063771022600693

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771022600693

Keywords:

Navigation