Skip to main content
Log in

Laser beam Steering According to Linear Trajectories Using an Acousto-Optic Cell

  • PHYSICAL ACOUSTICS
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

When two frequency modulated acoustic waves propagate perpendicularly in an optically transparent medium, a two-dimensional periodic modulation of the refractive index is produced. This leads to split and steer the laser beam according to three axes \(\left( {X,Y,\eta } \right)\). Adding a phase of \(\pi \) to one of these two acoustic waves permits to change the\(\,{{\eta }}\) oscillation axis with an angle of \({\pi \mathord{\left/ {\vphantom {\pi 2}} \right. \kern-0em} 2}\). Furthermore, the slope of this axis increases proportionally as a function of the ratio of two frequency excursions, which makes it possible to create an infinite number of linear trajectories. This technique is very flexible and should be useful for laser beam steering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

REFERENCES

  1. G. Aubin, J. Sapriel, V. Ya. Molchanov, R. Gabet, P. Grosso, S. Gosselin, and Y. Jaouen, Electron. Lett. 40, 448 (2004). https://hal.archives-ouvertes.fr/hal-00145577.

    Article  ADS  Google Scholar 

  2. L. Zhao, Q. Zhao, J. Zhou, Sh. Tian, and H. Zhang, Ultrasonics 50, 512 (2010). https://www.sciencedirect.com/science/article/abs/pii/S0041624X09001802.

    Article  Google Scholar 

  3. V. Iyer, T. M. Hoogland, and P. Saggau, J. Neurophysiol. 95, 535 (2006). https://journals.physiology.org/doi/full/10.1152/jn.00865.2005.

    Article  Google Scholar 

  4. P. A. Kirkby, K. M. N. Srinivas Nadella, and R. A. Silver, Opt. Express 18, 13720 (2010). https://opg.optica.org/oe/fulltext.cfm?uri=oe-18-13-13720&id=202058.

    Article  ADS  Google Scholar 

  5. Y. Kremer, J.-F. Léger, R. Lapole, N. Honnorat, Y. Candela, S. Dieudonné, and L. Bourdieu, Opt. Express 16, 10066 (2008). https://opg.optica.org/oe/fulltext.cfm?uri=oe-16-14-10066&id=164908.

    Article  ADS  Google Scholar 

  6. K. C. Vermeulen, J. van Mameren, G. J. M. Stienen, E. J. G. Peterman, G. J. L. Wuite, and C. F. Schmidt, Rev. Sci. Instrum. 77, 013704 (2006). https://aip.scitation.org/doi/10.1063/1.2165568.

    Article  ADS  Google Scholar 

  7. A. E. Wallin, H. Ojala, E. Hæggström, and R. Tuma, Appl. Phys. Lett. 92, 224104 (2008). https://aip.scitation.org/doi/10.1063/1.2940339.

    Article  ADS  Google Scholar 

  8. B. K. A. Ngoi, K. Venkatakrishnan, B. Tan, P. Stanley, and L. E. N. Lim, Opt. Express 9 (4), 200 (2001). https://opg.optica.org/oe/fulltext.cfm?uri=oe-9-4-200&id=65004.

    Article  ADS  Google Scholar 

  9. V. B. Voloshinov, P. A. Nikitin, V. V. Gerasimov, B. A. Knyazev, and Yu. Yu. Choporova, Quant. Electron. 43 (12), 1139 (2013). https://iopscience.iop.org/article/10.1070/QE2013v043n12ABEH015195.

  10. V. I. Balakshy and S. N. Mantsevich, Acoust. Phys. 58, 549 (2012). https://link.springer.com/article/ 10.1134/S1063771012050041.

    Article  ADS  Google Scholar 

  11. E. A. D’yakonov, V. B. Voloshinov, and N. V. Polikarpova, Acoust. Phys. 58, 107 (2012). https://link.springer.com/article/10.1134/S1063771012010071.

    Article  ADS  Google Scholar 

  12. S. N. Antonov, Acoust. Phys. 63, 410 (2017). https://link.springer.com/article/10.1134/S106377101-7030010.

    Article  ADS  Google Scholar 

  13. S. N. Antonov, Instrum. Exp. Tech. 62, 823 (2019). https://link.springer.com/article/10.1134/S002044-1219060010.

    Article  Google Scholar 

  14. S. N. Antonov, Instrum. Exp. Tech. 62, 386 (2019). https://link.springer.com/article/10.1134/S002044-1219020155.

    Article  Google Scholar 

  15. S. N. Antonov, Acoust. Phys. 64, 432 (2018). https://link.springer.com/article/10.1134/S106377-1018040012.

    Article  ADS  Google Scholar 

  16. S. N. Antonov and Yu. G. Rezvov, Acoust. Phys. 67, 128 (2021). https://link.springer.com/article/10.1134/S1063771021020019.

    Article  ADS  Google Scholar 

  17. A. Guessoum, N. Laouar, and K. Ferria, Opt. Laser Technol. 97, 260 (2017). https://www.sciencedirect.com/science/article/abs/pii/S0030399217300683.

    Article  ADS  Google Scholar 

  18. A. Guessoum, Opt. Spectrosc. 126 (4), 443 (2019). https://link.springer.com/article/10.1134/S0030400X-1904009X.

    Article  ADS  Google Scholar 

  19. A. Guessoum, Acoust. Phys. 68 (6), 542 (2022).

    Article  ADS  Google Scholar 

  20. Y. Ohtsuka, Y. Arima, and Y. Imal, App. Opt. 24, 2813 (1985). https://opg.optica.org/ao/abstract.cfm? uri=ao-24-17-2813.

  21. Y. Ohtsuka and A. Tanone, Opt. Commun. 39, 70 (1981). https://www.sciencedirect.com/science/article/abs/pii/0030401881904570.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Guessoum.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guessoum, A. Laser beam Steering According to Linear Trajectories Using an Acousto-Optic Cell. Acoust. Phys. 69, 53–57 (2023). https://doi.org/10.1134/S1063771022600565

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771022600565

Keywords:

Navigation