Skip to main content
Log in

Four-Channel Active Noise Control Modeling and Offline Simulation for Electric Bus Sound Quality Based on Two FxLMS Algorithms

  • ACOUSTIC ECOLOGY. NOISES AND VIBRATIONS
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

Aiming at the consensus problem of slow convergence for the active noise control (ANC) model based on standard FxLMS algorithm that leads to performance degradation, this paper takes the error signal and its variation as the inputs of fuzzy logic control, and proposes an improved FxLMS algorithm by fuzzy control mechanism with two-input-two-output TSK fuzzy rules (TSK-FxLMS); In addition, the four-channel ANC models based on standard FxLMS and TSK-FxLMS are constructed using the noise signals from four measuring points inside an electric bus under uniform and variable speed conditions, respectively. Ultimately, the offline simulation and acoustic parameter calculation results indicate that the A-weighted sound pressure level (ASPL) and loudness of the two FxLMS models within the low and middle frequencies are significantly reduced, whereas the TSK-FxLMS model has faster convergence rate, higher average reduction percentage of ASPL and loudness, which proves that the established four-channel TSK-FxLMS model has a better sound quality improvement effect than the standard FxLMS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. X. R. Huang, H. B. Huang, J. H. Wu, M. L. Yang, and W. P. Ding, Expert Syst. Appl. 160, 113657 (2020). https://doi.org/10.1016/j.eswa.2020.113657

    Article  Google Scholar 

  2. E. L. Zhang, J. M. Zhuo, L. Hou, C. H. Fu, and T. Guo, Appl. Acoust. 173, 107705 (2021). https://doi.org/10.1016/j.apacoust.2020.107705

    Article  Google Scholar 

  3. S. H. Wang, B. H. Tian, B. J. Zhang, Z. P. Li, and M. Y. Zeng, J. Vib. Shock 40 (1), 226 (2021) [in Chinese]. https://doi.org/10.13465/j.cnki.jvs.2021.01.030

  4. W. K. Shi, G. Z. Liu, H. S. Song, Z. Y. Chen, and B. Zhang, Jinlin Daxue Xuebao (Gongxueban) 48 (2), 373 (2018) [in Chinese]. https://doi.org/10.13229/j.cnki.jdxbgxb20170110

  5. J. Highway Transp. Zhongguo Gonglu Xuebao 30 (6), 1 (2017) [in Chinese]. https://doi.org/10.19721/j.cnki.1001-7372.2017.06.001

  6. S. Y. Zhang, Y. J. Li, and L. H. Yang, Qiche Gongcheng 38 (10), 1245 (2016) [in Chinese]. https://doi.org/10.19562/j.chinasae.qcgc.2016.10.014

  7. Y. Xu, A. G. Li, X. W. Sheng, and Z. Y. Zhang, J. Text. Inst. 111 (10), 1410 (2020). https://doi.org/10.1080/00405000.2019.1702488

    Article  Google Scholar 

  8. N. G. Kanev, Acoust. Phys. 52, 571 (2006). https://doi.org/10.1134/S1063771006050101

    Article  ADS  Google Scholar 

  9. E. L. Zhang, Z. Q. Liu, J. J. Zhang, and J. H. Lin, Arch. Acoust. 46 (3), 491 (2021). https://doi.org/10.24425/aoa.2021.138141

    Article  Google Scholar 

  10. A. Y. Zverev, Acoust. Phys. 62 (4), 478 (2016). https://doi.org/10.1134/S1063771016040187

    Article  ADS  Google Scholar 

  11. Y. S. Wang, S. Zhang, H. Guo, X. L. Wang, C. Yang, and N. N. Liu, Appl. Acoust. 171, 107561 (2021). https://doi.org/10.1016/j.apacoust.2020.107561

    Article  Google Scholar 

  12. A. V. Lvov, V. A. Karaseva, O. A. Potapov, and A. M. Sokov, Acoust. Phys. 69 (3), 372 (2023). https://doi.org/10.1134/S1063771022700026

    Article  ADS  Google Scholar 

  13. J. G. Jiang and Y. Li, Appl. Acoust. 136, 139 (2018). https://doi.org/10.1016/j.apacoust.2018.02.021

    Article  Google Scholar 

  14. N. G. Kanev, Acoust. Phys. 58, 262 (2012). https://doi.org/10.1134/S1063771012010113

    Article  ADS  Google Scholar 

  15. S. Kim, J. K. Kim, and M. E. Altinsoy, Appl. Acoust. 209, 109408 (2023). https://doi.org/10.1016/j.apacoust.2023.109408

    Article  Google Scholar 

  16. K. Yoon, D. Kim, and S. Lee, J. Mech. Sci. Technol. 33 (4), 1573 (2019). https://doi.org/10.1007/s12206-019-0309-y

    Article  Google Scholar 

  17. X. P. Xie, X. K. Shi, and Y. Z. Chen, Appl. Acoust. 202, 109151 (2022). https://doi.org/10.1016/j.apacoust.2022.109151

    Article  Google Scholar 

  18. D. Y. Shi, W. S. Gan, J. J. He, and B. Lam, IEEE Trans. Very Large Scale Integr. VLS Syst. 28 (4), 940 (2019). https://doi.org/10.1109/TVLSI.2019.2956524

    Article  Google Scholar 

  19. D. Y. Shi, B. Lam, X. Y. Shen, and W. S. Gan, Signal Process. 207, 108938 (2023). https://doi.org/10.1016/j.sigpro.2023.108938

    Article  Google Scholar 

  20. J. K. Thomas, S. P. Lovstedt, J. D. Blotter, and S. D. Sommerfedt, J. Acoust. Soc. Am. 123 (6), 4238 (2008). https://doi.org/10.1121/1.2903857

    Article  ADS  Google Scholar 

  21. J. Chen and J. Yang, J. Sound Vib. 532, 116986 (2022). https://doi.org/10.1016/j.jsv.2022.116986

  22. J. Romeu, A. Balastegui, T. Pamies, and R. Arcos, Acoust. Phys. 60 (1), 77 (2014). https://doi.org/10.1134/S1063771014010114

    Article  ADS  Google Scholar 

  23. B. Krstajic, Z. Zecevic, and Z. Uskokovic, AEU Int. J. Electron. Commun. 67 (10), 848 (2013). https://doi.org/10.1016/j.aeue.2013.04.012

    Article  Google Scholar 

  24. S Zhang, L. J. Zhang, D. J. Meng, and X. Y. Zhang, Appl. Acoust. 201, 109128 (2022). https://doi.org/10.1016/j.apacoust.2022.109128

    Article  Google Scholar 

  25. Y. K. Lu, IEEE Trans. Fuzzy Syst. 26 (6), 3222 (2018). https://doi.org/10.1109/TFUZZ.2018.2815552

    Article  Google Scholar 

  26. T. Peng, Q. Zhu, and M. O. Tokhi, J. Low Freq. Noise Vib. Act. Control. 39 (1), 174 (2020). https://doi.org/10.1177/1461348419840961

    Article  Google Scholar 

  27. X. P. Xie, Z. Y. Ma, J. Y. Ye, F. D. Zeng, W. C. Fan, and B. G. Chen, Appl. Acoust. 154, 138 (2019). https://doi.org/10.1016/j.apacoust.2019.04.039

    Article  Google Scholar 

  28. S. H. Wang, S. D. Wang, F. S. Zha, P. F. Wang, and M.T. Li, Mach. Electron. 12, 23 (2015). [in Chinese] https://doi.org/10.3969/j.issn.1001-2257.2015.12.006

  29. L. K. Rimskaya-Korsakova, P. A. Pyatakov, and S. A. Shulyapov, Acoust. Phys. 68 (5), 502 (2022). https://doi.org/10.1134/S1063771022050098

    Article  ADS  Google Scholar 

  30. E. L. Zhang, Y. Chen, X. Y. Chen, J. B. Zhang, P. W. Xu, and J. M. Zhuo, Int. J. Acoust. Vib. 28 (2), 158 (2023). https://doi.org/10.20855/ijav.2023.28.21922

    Article  Google Scholar 

Download references

Funding

The work was supported by National Natural Science Foundation of China (12004136), Natural Science Foundation of Fujian Province (2023J011438), Major Educational Research Project of Fujian Province (FBJY20230154), the Key Research and Industrialization Project of Technological Innovation in Fujian Province (2023G013) and Science and Technology Project for High-level Talents of XMUT (YKJ22017R).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. L. Zhang.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, E.L., Peng, Z.L., Li, Z.J. et al. Four-Channel Active Noise Control Modeling and Offline Simulation for Electric Bus Sound Quality Based on Two FxLMS Algorithms. Acoust. Phys. 70, 143–152 (2024). https://doi.org/10.1134/S1063771022600450

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771022600450

Keywords:

Navigation