Skip to main content
Log in

Characteristics of Nanosecond Laser-Induced Underwater Acoustic Signals Across the Water–Air Interface

  • CLASSICAL PROBLEMS OF LINEAR ACOUSTICS AND WAVE THEORY
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

The temporal and spectral characteristics of nanosecond laser-induced underwater acoustic shockwave for varying input laser energies are obtained. The underwater acoustic shockwave results in reflection and transmission at the water-air interface due to enormous acoustic impedance mismatching between the water and air. With increasing input laser energies, the peak-to-peak overpressures of the reflected and transmitted signals increase linearly. The relationship between the reflected and transmitted acoustic energy coefficients across the water-air interface and the incident laser energy is studied. The advantage of power spectral density in classifying reflected and transmitted signals is based on their peak frequency and full width at half maximum (FWHM). With increasing incident laser energy, the FWHM decreases, and the area under the curve increases for reflected and transmitted signals. In addition to the experimental investigation, finite element analysis (FEA) was used to visualize underwater acoustic signal reflection and transmission at the interface. Experimental data is used as input for FEA in visualizing the acoustic signal in the spatio-temporal domain at the water-air interface. These studies could also be useful for understanding the blast wave evolution of underwater explosions and their interactions at the interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

REFERENCES

  1. J. G. Fujimoto, W. Z. Lin, E. P. Ippen, C. A. Puliafito, and R. F. Steinert, Invest. Ophthalmol. Visual Sci. 26 (12), 1771 (1985).

    Google Scholar 

  2. I. Tanev, V. Tanev, and A. J. Kanellopoulos, J. Cataract Refract. Surg. 42 (5), 725 (2016). https://doi.org/10.1016/j.jcrs.2016.02.039

    Article  Google Scholar 

  3. T. Lee, W. Luo, Q. Li, H. Demirci, and L. J. Guo, Small 13 (38), 1701555 (2017). https://doi.org/10.1002/smll.201701555

    Article  Google Scholar 

  4. J. Di, J. Kim, Q. Hu, X. Jiang, and Z. Gu, J. Control. Release 220 (Pt. B), 592 (2015). https://doi.org/10.1016/j.jconrel.2015.08.033

  5. G. N. Sankin, F. Yuan, and P. Zhong, Phys. Rev. Lett. 105 (7), 078101 (2010). https://doi.org/10.1103/PhysRevLett.105.078101

    Article  ADS  Google Scholar 

  6. M. S. Hutson and X. Ma, Phys. Rev. Lett. 99 (15), 158104 (2007). https://doi.org/10.1103/physrevlett.99.158104

    Article  ADS  Google Scholar 

  7. F. Huang, Y. Tian, Y. Li, W. Ye, Y. Lu, J. Guo, and R. Zheng. Appl. Opt. 60 (6), 1595 (2021). https://doi.org/10.1364/AO.413853

    Article  ADS  Google Scholar 

  8. N. Hellman, K. R. Rau, H. H. Yoon, S. Bae, J. F. Palmer, K. S. Phillips, N. L. Allbritton, and V. Venugopalan, Anal. Chem. 79 (12), 4484 (2007). https://doi.org/10.1021/ac070081i

    Article  Google Scholar 

  9. T. G. Jones, A. C. Ting, P. A. Sprangle, L. D. Bibee, and J. R. Penano, US Patent 7,260,023 (Aug. 21, 2007).

  10. T. G. Jones, T. C. Tang, S. L. Means, E. R. Franchi, and K. B. Yoo, US Patent 8,228,760 (July 24, 2012).

  11. J. R. Woodworth, I. Molina, D. Nelson, J. Maenchen, G. Sarkisov, J. Blickem, R. Starbird, F. Wilkins, D. Van DeValde, and D. L. Johnson, IEEE Trans. Dielectr. Electr. Insul. 14 (4), 951 (2007). https://doi.org/10.1109/MODSYM.2006.365277

    Article  Google Scholar 

  12. B. Wu and Y. C. Shin, Appl. Phys. Lett. 88 (4), 041116 (2006). https://doi.org/10.1063/1.2168022

    Article  ADS  Google Scholar 

  13. G. N. Sankin, Y. Zhou, and P. Zhong, J. Acoust. Soc. Am. 123 (6), 4071 (2008). https://doi.org/10.1121/1.2903865

    Article  ADS  Google Scholar 

  14. R. Zhao, R. Xu, and Z. Liang, Optik 124 (12), 1122 (2013). https://doi.org/10.1016/j.ijleo.2012.03.013

    Article  ADS  Google Scholar 

  15. J. Yellaiah and P. Prem Kiran, in Proc. Laser Applications Conf. (Optical Society of America, 2020), p. JTh6A-28. https://doi.org/10.1364/ASSL.2020.JTh6A.28.

  16. T. G. Jones, A. C. Ting, D. F. Gordon, M. H. Helle, and J. R. Peñano, US Patent 9,088,123 (July 21, 2015).

  17. M. H. Helle, T. G. Jones, J. R. Penano, D. Kaganovich, and A. Ting, Appl. Phys. Lett. 103 (12), 121101 (2013). https://doi.org/10.1063/1.4821447

    Article  ADS  Google Scholar 

  18. J. Yellaiah and P. K. Paturi, in Proc. Conf. on Frontiers in Optics (Optical Society of America, 2020), p. JTu1A-51. https://doi.org/10.1364/AO.48.000C38.

  19. J. Yellaiah and P. K. Paturi, Proc. Meet. Acoust. UACE, Acoust. Soc. Am. 44 (1), 070003 (2021). https://doi.org/10.1121/2.0001437.

  20. J. Yellaiah, M. Elle, N. Guthikonda, and P. Paturi, in Proc. ICOL-2019, Ed. by K. Singh, A. K. Gupta, S. Khare, N. Dixit, and K. Pant (Springer, 2021). https://doi.org/10.1007/978-981-15-9259-1_92.

  21. A. A. Buzukov, Y. U. Popov, and V. S. Teslenko, J. Appl. Mech. Tech. Phys. 10 (5), 701 (1969). https://doi.org/10.1007/BF00907425

    Article  ADS  Google Scholar 

  22. T. G. Jones, J. Grun, H. R. Burris, and Ch. Manka, Report No. NRL/MR/6790–99-8317 (Naval Research Lab., Washington, 1999).

  23. H. Hosseini, S. Moosavi-Nejad, H. Akiyama, and V. Menezes, Appl. Phys. Lett. 104 (10), 103701 (2014). https://doi.org/10.1063/1.4867883

    Article  ADS  Google Scholar 

  24. S. V. Egerev, Acoust. Phys. 49 (1), 51 (2003). https://doi.org/10.1134/1.1537388

    Article  ADS  Google Scholar 

  25. S. V. Egerev, A. N. Ivakin, O. B. Ovchinnikov, and A. E. Pashin, J. Acoust. Soc. Am. 95 (5), 3021 (1994). https://doi.org/10.1121/1.408737

    Article  ADS  Google Scholar 

  26. F. Blackmon and L. Antonelli, Appl. Opt. 44 (1), 103 (2005). https://doi.org/10.1364/AO.44.000103

    Article  ADS  Google Scholar 

  27. L. Antonelli and F. Blackmon, J. Acoust. Soc. Am. 116 (6), 3393 (2004). https://doi.org/10.1121/1.1811475

    Article  ADS  Google Scholar 

  28. F. A. Blackmon, T. L. Antonelli, and A. Kalinowski, Photon. Port Harbor Secur., Int. Soc. Opt. Photon. 5780, 99 (2005). https://doi.org/10.1117/12.606822

    Article  Google Scholar 

  29. L. Antonelli and F. Blackmon, in Proc. MTS/IEEE Conf. OCEANS’02 (Biloxi, MI, 2002), Vol. 4, p. 1949. https://doi.org/10.1109/OCEANS.2002.1191931.

  30. A. Vogel, S. Busch, and U. Parlitz, J. Acoust. Soc. Am. 100, 148 (1996). https://doi.org/10.1121/1.415878

    Article  ADS  Google Scholar 

  31. A. Vogel and W. Lauterborn, J. Acoust. Soc. Am. 84 (2), 719 (1988). https://doi.org/10.1121/1.396852

    Article  ADS  Google Scholar 

  32. A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, Appl. Phys. B: Lasers Opt. 68 (2) (1999). https://doi.org/10.1007/s003400050617

  33. X. Chen, R.-Q. Xu, J.-P. Chen, Z.-H. Shen, L. Jian, and X.-W. Ni, Appl. Opt. 43 (16), 3251 (2004). https://doi.org/10.1364/AO.43.003251

    Article  ADS  Google Scholar 

  34. A. Nath and A. Khare, Laser Particle Beams 29 (1) (2011). https://doi.org/10.1017/S0263034610000662

  35. L. Fu, S. Wang, J. Xin, S. Wang, C. Yao, Z. Zhang, and J. Wang, Opt. Express 26, 28560 (2018). https://doi.org/10.1364/OE.26.028560

    Article  ADS  Google Scholar 

  36. Y. Tagawa, S. Yamamoto, K. Hayasaka, and M. Kameda, J. Fluid Mech. 808, 5 (2016). https://doi.org/10.1017/jfm.2016.644

    Article  ADS  MathSciNet  Google Scholar 

  37. J. Yellaiah and P. Paturi, in Proc. Conf. Frontiers in Optics (Optical Society of America, 2020), p. JTu1B-50. https://doi.org/10.1364/FIO.2020.JTu1B.50.

  38. V. Jukna, S. Albert, C. Millon, B. Mahieu, R. Guillermin, G. Rabau, D. Fattaccioli, A. Mysyrowicz, A. Couairon, and A. Houard, Opt. Express 30 (6), 9103 (2022). https://doi.org/10.1364/OE.453749

    Article  ADS  Google Scholar 

  39. J. Yellaiah and P. Paturi, Appl. Opt. 60 (16), 4582 (2021). https://doi.org/10.1364/AO.422471

    Article  ADS  Google Scholar 

  40. A. Fitzpatrick, A. Singhvi, and A. Arbabian, IEEE Access 8, 189945 (2020). https://doi.org/10.1109/ACCESS.2020.3031808

    Article  Google Scholar 

  41. F. Tonolini and F. Adib, in Proc. ACM Special Interest Group Conf. on Data Communication (Budapest, 2018), p. 117. https://doi.org/10.1145/3230543.3230580.

  42. M. Muntasir, M. S. Islam, M. Younis, and G. Carter, in Proc. 30th IEEE Wireless and Optical Communications Conf. (WOCC) (2021), p. 272. https://doi.org/10.1109/WOCC53213.2021.9603005.

  43. H. Jiang, H. Qiu, N. He, and X. Liao, Res. Phys. 9, 1291 (2018). https://doi.org/10.1016/j.rinp.2018.04.050

    Article  Google Scholar 

  44. T. Liu, J. G. Wang, and S. G. Zong, Appl. Mech. Mat. 143, 653 (2012). https://doi.org/10.4028/www.scientific.net/AMM.143-144.653

    Article  Google Scholar 

  45. F. Blackmon, L. Estes, and G. Fain, Appl. Opt. 44 (18), 3833 (2005). https://doi.org/10.1364/AO.44.003833

    Article  ADS  Google Scholar 

  46. L. F. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders. Fundamentals of Acoustics, 4th ed. (John Wiley & Sons, 1999).

    Google Scholar 

  47. J. Yellaiah and P. Paturi, in Proc. IEEE Workshop on Recent Advances in Photonics (WRAP) (Guwahati, 2019), p. 1. https://doi.org/10.1109/WRAP47485.2019.9013651.

  48. Y. Brelet, A. Jarnac, J. Carbonnel, Y.-B. André, A. Mysyrowicz, A. Houard, D. Fattaccioli, R. Guillermin, and J.-P. Sessarego, J. Acoust. Soc. Am. 137 (4), EL288 (2015). https://doi.org/10.1121/1.4914998

    Article  Google Scholar 

  49. B. S. Lakshmi, Ch. Leela, S. Bagchi, P. Prem Kiran, T. S. Prashant, S. P. Tewari, and V. S. Ashoka, AIP Conf. Proc. 1391 (1), 275 (2011). https://doi.org/10.1063/1.3646857

    Article  ADS  Google Scholar 

  50. Comsol Multiphysics. Acoustic Module User Manual, Version 5.5 (2019).

  51. S. H. Ko, S. G. Ryu, N. Misra, H. Pan, C. P. Grigoropoulos, N. Kladias, E. Panides, and G. A. Domoto, Appl. Phys. Lett. 91 (5), 051128 (2007). https://doi.org/10.1063/1.2768192

    Article  ADS  Google Scholar 

  52. S. H. Ko, D. Lee, H. Pan, S.-G. Ryu, C. P. Grigoropoulos, N. Kladias, E. Panides, and G. A. Domoto, Appl. Phys. A 100 (2), 391 (2010). https://doi.org/10.1007/s00339-010-5856-0

    Article  ADS  Google Scholar 

  53. J. Yellaiah, Appl. Opt. 61, 9685 (2022). https://doi.org/10.1364/AO.473264

    Article  ADS  Google Scholar 

  54. J. Yellaiah, in Proc. Conf. Frontiers in Optics + Laser Science (Optica Publishing Group, 2022), Art. No. JTu5B-58.

  55. J. Yellaiah, Proc. Conf. Frontiers in Optics + Laser Science (Optica Publishing Group, 2022), Art. No. JTu5B-59.

Download references

ACKNOWLEDGMENTS

Defence Research and Development (DRDO) Organization, India (Project no. ERIP/ER/1501138/ M/01/319/D(RD)).

Funding

The author thanks Prof. P. Prem Kiran for his support and encouragement in carrying out the work and for providing an experimental lab facility. And also, thank Defence Research and Development Organization (DRDO), Government of India, for financial support through ACRHEM, Phase III.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Yellaiah.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

ADDITIONAL INFORMATION

Data underlying the results presented in this paper is not publicly available at this time but may be obtained from the authors upon reasonable request.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yellaiah, J. Characteristics of Nanosecond Laser-Induced Underwater Acoustic Signals Across the Water–Air Interface. Acoust. Phys. 69, 7–19 (2023). https://doi.org/10.1134/S1063771022600437

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771022600437

Keywords:

Navigation