Skip to main content
Log in

The Cavitation Activity of Aqueous Suspensions of Porous Silicon Nanoparticles with Different Degrees of Surface Hydrophobicity

  • ACOUSTICS OF LIVING SYSTEMS. BIOMEDICAL ACOUSTICS
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

The dependence of acoustic cavitation thresholds in aqueous suspensions of porous silicon nanoparticles (pSiNPs) on the degree of hydrophobicity of their surface has been studied. Nanoparticles with an average size of 100 nm were prepared by mechanical grinding of porous silicon (pSi) films in ethanol. According to IR spectroscopy data, such pSiNPs are initially characterized by a hydrophilic surface. To obtain amphiphilic (hydrophobic–hydrophilic) nanoparticles, pSi films were hydrophobized before grinding by surface modification with octadecylsilane. When hydrophobic pSi films are ground in ethanol to nanoparticles, silicon–silicon bonds are broken, followed by their oxidation, due to which the surface is partially hydrophilized. It has been shown that the threshold of acoustic cavitation in suspensions of amphiphilic pSiNPs is significantly reduced compared to that of hydrophilic pSiNPs. The threshold value of acoustic cavitation in a suspension of amphiphilic nanoparticles at a concentration of 1 mg/mL remained almost constant for 5 days. The results obtained are important for the development of methods for sonodynamic therapy of cancer using pSiNPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. E. J. Anglin, L. Cheng, W. R. Freeman, and M. J. Sailor, Adv. Drug Delivery Rev. 60 (11), 1266 (2008). https://doi.org/10.1016/j.addr.2008.03.017

    Article  Google Scholar 

  2. P. V. Maximchik, K. Tamarov, E. V. Sheval, E. Tolstik, T. Kirchberger-Tolstik, Z. Yang, V. Sivakov, B. Zhivotovsky, and L. A. Osminkina, ACS Biomater. Sci. Eng. 5 (11), 6063 (2019). https://doi.org/10.1021/acsbiomaterials.9b01292

    Article  Google Scholar 

  3. L. A. Osminkina, A. L. Nikolaev, A. P. Sviridov, N. V. Andronova, K. P. Tamarov, M. B. Gongalsky, A. A. Kudryavtsev, H. M. Treshalina, and V. Y. Timoshenko, Microporous Mesoporous Mater. 210, 169 (2015). https://doi.org/10.1016/j.micromeso.2015.02.037

    Article  Google Scholar 

  4. K. Tamarov, A. Sviridov, W. Xu, M. Malo, V. Andreev, V. Timoshenko, and V.-P. Lehto, ACS Appl. Mater. Interfaces 9 (40), 35234 (2017). https://doi.org/10.1021/acsami.7b11007

    Article  Google Scholar 

  5. A. Sviridov, K. Tamarov, I. Fesenko, W. Xu, V. Andreev, V. Timoshenko, and V.-P. Lehto, Front. Chem. 7, 393 (2019). https://doi.org/10.3389/fchem.2019.00393

    Article  ADS  Google Scholar 

  6. M. J. Montoya, L. Wu, S. Sabuncu, A. Sapre, F. Civitci, S. Ibsen, S. Esener, and A. Yildirim, ACS Omega 5 (38), 24762 (2020). https://doi.org/10.1021/acsomega.0c03377

    Article  Google Scholar 

  7. M. B. Gongalsky, N. V. Pervushin, D. E. Maksutova, U. A. Tsurikova, P. P. Putintsev, O. D. Gyuppenen, Y. V. Evstratova, O. A. Shalygina, G. S. Kopeina, A. A. Kudryavtsev, B. Zhivotovsky, and L. A. Osminkina, Nanomaterials 11 (9), 2167 (2021). https://doi.org/10.3390/nano11092167

    Article  Google Scholar 

  8. A. A. Atchley and A. Prosperetti, J. Acoust. Soc. Am. 86 (3), 1065 (1989). https://doi.org/10.1121/1.398098

    Article  ADS  Google Scholar 

  9. A. Giacomello and R. Roth, Adv. Phys.: X 5 (1), 1817780 (2020). https://doi.org/10.1080/23746149.2020.1817780

    Article  Google Scholar 

  10. B. M. Borkent, S. Gekle, A. Prosperetti, and D. Lohse, Phys. Fluids 21 (10), 102003 (2009). https://doi.org/10.1063/1.3249602

    Article  ADS  Google Scholar 

  11. J. C. Simon, O. A. Sapozhnikov, W. Kreider, M. Breshock, J. C. Williams, and M. R. Bailey, Phys. Med. Biol. 63 (2), 025011 (2018). https://doi.org/10.1088/1361-6560/aa9a2f

    Article  Google Scholar 

  12. D. V. Leonov, N. S. Kulberg, A. I. Gromov, S. P. Morozov, and S. Yu. Kim, Acoust. Phys. 64 (1), 105 (2018). https://doi.org/10.1134/S1063771018010128

    Article  ADS  Google Scholar 

  13. V. A. Akulichev and V. I. Il’ichev, Acoust. Phys. 51 (2), 128 (2005).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was carried out within the framework of the Development Program of the Interdisciplinary Scientific and Educational School of Moscow University “Photonic and Quantum Technologies. Digital Medicine.”

Funding

The study was funded through a grant from the Russian Science Foundation, no. 22-75-10107 https://rscf.ru/project/22-75-10107/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Andreev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Egoshina, V.D., Gongalsky, M.B., Tsurikova, U.A. et al. The Cavitation Activity of Aqueous Suspensions of Porous Silicon Nanoparticles with Different Degrees of Surface Hydrophobicity. Acoust. Phys. 68, 649–656 (2022). https://doi.org/10.1134/S106377102206015X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377102206015X

Keywords:

Navigation