Skip to main content
Log in

Models and Methods for Scalar Wave Filtration of Fields of Wall Turbulent Pressure Fluctuations

  • ATMOSPHERIC AND AEROACOUSTICS
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

The notion of the scalar wavenumber-frequency spectrum of wall pressures is introduced, and its principal specific features are considered. A scalar wavenumber frequency spectrum representing the overall energy of all the wave component of a field of turbulent pressures with a specified wave vector module contains the brief information required for the solution of many problems of aerohydrodynamic acoustics. It is shown that loop filters enable the estimation of a wavenumber-frequency spectrum in the region of small wavenumbers. Despite the difficulty in practical implementation of scalar wave filtration of fields of turbulent pressure fluctuations, the construction of loop filters currently seems to be a promising trend of studies. The proposed methods and the results obtained in this study show that the broadband scalar wave filtration of a field of wall pressures may be performed on the basis of finite-size approximations of an “ideal” scalar wave filter with unit wave sensitivity within a specified range of wavenumbers and zero sensitivity outside this range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. E. B. Kudashev and L. R. Yablonik, Acoust. Phys. 67 (6), 631 (2021).

    Article  ADS  Google Scholar 

  2. A. Yu. Golubev, E. B. Kudashev and L. R. Yablonik, Pressure Turbulent Pulsations in Acoustics and Aerodynamics (Fizmatlit, Moscow, 2019) [in Russian].

    Google Scholar 

  3. W. K. Blake, Mechanics of Flow-Induced Sound and Vibration, Vol. 2: Complex Flow-Structure Interactions, 2nd ed. (Acad. Press, 2017).

    Google Scholar 

  4. Flinovia—Flow Induced Noise and Vibration Issues and Aspects-III, Ed. by E. Ciappi, S. De Rosa, F. Franco, S. A. Hambric, R. C. K. Leung, V. Clair, L. Maxit, and N. Totaro (Springer Nature Switzerland, 2021). https://doi.org/10.1007/978-3-030-64807-7.

  5. A. V. Smol’yakov and V. M. Tkachenko, Turbulent Pulsations Measuring (Energiya, Leningrad, 1980) [in Russian].

    Google Scholar 

  6. E. B. Kudashev and L. R. Yablonik, Near-Wall Turbulent Pressure Pulsations (Nauchnyi mir, Moscow, 2007) [in Russian].

  7. E. B. Kudashev and L. R. Yablonik, Acoust. Phys. 66 (6), 633 (2020).

    Article  ADS  Google Scholar 

  8. L. D. Landau and E. M. Lifshitz, Theory of Elasticity (Nauka, Moscow, 1965; Elsevier, 1986).

  9. B. M. Efimtsov and A. Ya. Zverev, Uch. Zap. TsAGI 40 (3), 60 (2009).

    Google Scholar 

  10. B. M. Efimtsov and A. Ya. Zverev, Acoust. Phys. 58 (4), 420 (2012).

    Article  ADS  Google Scholar 

  11. R. H. Mellen, J. Acoust. Soc. Am. 95, 1671 (1994).

    Article  ADS  Google Scholar 

  12. B. M. Abraham and W. L. Keith, J. Fluids Eng. 120 (1), 29 (1998).

    Article  Google Scholar 

  13. M. S. Howe, Acoustics of Fluid-Structure Interactions (Univ. Press, Cambridge, 1998).

    Book  MATH  Google Scholar 

  14. G. N. Watson, A Treatise on the Theory of Bessel Functions (Cambridge Univ. Press, 1944; Izd. inostrannoi literatury, Moscow, 1949).

Download references

Funding

This study was supported by the Russian Foundation for Basic Research, project no. 20-02-00181 A.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. B. Kudashev or L. R. Yablonik.

Additional information

Translated by E. Glushachenkova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kudashev, E.B., Yablonik, L.R. Models and Methods for Scalar Wave Filtration of Fields of Wall Turbulent Pressure Fluctuations. Acoust. Phys. 68, 624–631 (2022). https://doi.org/10.1134/S1063771022060070

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771022060070

Keywords:

Navigation