Skip to main content
Log in

Acoustic Fields and Radiation Forces Induced by a Standing Surface Wave in Layered Viscous Media

  • PHYSICAL ACOUSTICS
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

Calculations are performed for the fields, amplitude, and dispersion characteristics of a surface acoustic wave in the “viscous fluid half-space–solid half-space” and “viscous fluid layer–elastic half-space” systems taken into account the shear components in the fluid. The resulting radiation pressure is calculated, which occurs in a viscous fluid layer under the impact of a standing surface wave and acts on the elementary fluid volume due to the nonlinearity of the equations of motion in single- and two-mode regimes. It is shown that viscosity results in a violation in the perfect periodicity and symmetry of the fields of the radiation forces and acoustic streaming. The shear components result in considerable radiation pressure forces localized in a narrow domain in the vicinity of the interface. The excitation of several wave modes in a system makes it possible to generate complex spatial distributions of radiation force fields. Then controlling the wave frequency and the layer thickness, one can reach either the predominance of the single-mode field or a comparable contribution of several modes. The fundamental mode is predominant in the vicinity of a wave resonance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. A. A. Krokhmal’, N. E. Krokhmal’, and O. A. Sapozhnikov, Bull. Russ. Acad. Sci.: Phys. 86 (2), 194 (2022).

    Article  Google Scholar 

  2. A. Wixforth, Superlattices Microstruct. 33, 389 (2003).

    Article  ADS  Google Scholar 

  3. P. V. Lebedev-Stepanov and O. V. Rudenko, Acoust. Phys. 55 (6), 729 (2009).

    Article  ADS  Google Scholar 

  4. D. Ya. Sukhanov, S. N. Roslyakov, and F. S. Emel’yanov, Acoust. Phys. 66 (2), 137 (2020).

    Article  ADS  Google Scholar 

  5. J. Li, C. J. Liu, and W. J. Zhang, Acoust. Phys. 63 (1), 125 (2017).

    Article  ADS  Google Scholar 

  6. A. P. Sarvazyan, O. V. Rudenko, and M. Fatemi, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 68 (11), 3261 (2021). https://doi.org/10.1109/TUFFC.2021.3112505

    Article  Google Scholar 

  7. I. A. Zhvania, I. I. Konopatskaya, M. A. Mironov, and P. A. Pyatakov, Acoust. Phys. 67 (3), 245 (2021).

    Article  ADS  Google Scholar 

  8. O. V. Rudenko, P. V. Lebedev-Stepanov, V. A. Gusev, A. I. Korobov, B. A. Korshak, N. I. Odina, M. Yu. Izosimova, S. P. Molchanov, and M. V. Alfimov, Acoust. Phys. 56 (6), 935 (2010).

    Article  ADS  Google Scholar 

  9. D. I. Makalkin, B. A. Korshak, and A. P. Brysev, Acoust. Phys. 63 (5), 590 (2017).

    Article  ADS  Google Scholar 

  10. V. A. Gusev and O. V. Rudenko, Acoust. Phys. 56 (6), 861 (2010).

    Article  ADS  Google Scholar 

  11. V. A. Gusev and D. A. Zharkov, Bull. Russ. Acad. Sci.: Phys. 85 (6), 626 (2021).

    Article  MathSciNet  Google Scholar 

  12. B. B. Badmaev, B. B. Damdinov, and T. S. Dembelova, Bull. Russ. Acad. Sci.: Phys. 79 (10), 1301 (2015).

    Article  Google Scholar 

  13. D. N. Makarova, T. S. Dembelova, and B. B. Badmaev, Acoust. Phys. 66 (6), 613 (2020).

    Article  ADS  Google Scholar 

  14. I. A. Viktorov, Sound Surface Waves in Solids (Nauka, Moscow, 1981) [in Russian].

    Google Scholar 

  15. V. A. Krasil’nikov and V. V. Krylov, Introduction into Physical Acoustics (Nauka, Moscow, 1984) [in Russian].

    Google Scholar 

  16. V. A. Gusev and P. A. Simonova, Phys. Wave Phenom. 23 (4), 268 (2015).

    Article  ADS  Google Scholar 

  17. M. M. Vol’kenshtein and V. M. Levin, Sov. Phys. Acoust. 34 (4) 351 (1988).

    Google Scholar 

  18. O. V. Rudenko and S. I. Soluyan, Theoretical Foundations of Nonlinear Acoustics (Nauka, Moscow, 1975; Consultants Bureau, New York, 1977).

  19. O. A. Vasilieva and O. V. Rudenko, Acoust. Phys. 66 (3), 235 (2020).

    Article  ADS  Google Scholar 

  20. V. A. Gusev, in Proc. All-Russian Acoustical Conf. (POLITEKh-PRESS, St. Petersburg, 2020), p. 101 [in Russian].

  21. L. P. Gor’kov, Sov. Phys. Dokl. 5 (6), 773 (1961).

    Google Scholar 

  22. Z. A. Gol’dberg, in Intense Ultrasonic Fields, Ed. by L. D. Rozenberg (Nauka, Moscow, 1968), p. 49 [in Russian].

    Google Scholar 

  23. V. E. Gusev and O. V. Rudenko, Sov. Phys. Acoust. 25 (6), 493 (1979).

    ADS  Google Scholar 

  24. O. V. Rudenko, in Nonlinear Problems of Oscillation Theory and Control Theory. Vibration Mechanics (Nauka, St. Petersburg, 2009), p. 402 [in Russian].

    Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 20-02-00493.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. A. Gusev or D. A. Zharkov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Podymova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gusev, V.A., Zharkov, D.A. Acoustic Fields and Radiation Forces Induced by a Standing Surface Wave in Layered Viscous Media. Acoust. Phys. 68, 549–563 (2022). https://doi.org/10.1134/S1063771022060045

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771022060045

Keywords:

Navigation