Abstract—
Calculations are performed for the fields, amplitude, and dispersion characteristics of a surface acoustic wave in the “viscous fluid half-space–solid half-space” and “viscous fluid layer–elastic half-space” systems taken into account the shear components in the fluid. The resulting radiation pressure is calculated, which occurs in a viscous fluid layer under the impact of a standing surface wave and acts on the elementary fluid volume due to the nonlinearity of the equations of motion in single- and two-mode regimes. It is shown that viscosity results in a violation in the perfect periodicity and symmetry of the fields of the radiation forces and acoustic streaming. The shear components result in considerable radiation pressure forces localized in a narrow domain in the vicinity of the interface. The excitation of several wave modes in a system makes it possible to generate complex spatial distributions of radiation force fields. Then controlling the wave frequency and the layer thickness, one can reach either the predominance of the single-mode field or a comparable contribution of several modes. The fundamental mode is predominant in the vicinity of a wave resonance.
Similar content being viewed by others
REFERENCES
A. A. Krokhmal’, N. E. Krokhmal’, and O. A. Sapozhnikov, Bull. Russ. Acad. Sci.: Phys. 86 (2), 194 (2022).
A. Wixforth, Superlattices Microstruct. 33, 389 (2003).
P. V. Lebedev-Stepanov and O. V. Rudenko, Acoust. Phys. 55 (6), 729 (2009).
D. Ya. Sukhanov, S. N. Roslyakov, and F. S. Emel’yanov, Acoust. Phys. 66 (2), 137 (2020).
J. Li, C. J. Liu, and W. J. Zhang, Acoust. Phys. 63 (1), 125 (2017).
A. P. Sarvazyan, O. V. Rudenko, and M. Fatemi, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 68 (11), 3261 (2021). https://doi.org/10.1109/TUFFC.2021.3112505
I. A. Zhvania, I. I. Konopatskaya, M. A. Mironov, and P. A. Pyatakov, Acoust. Phys. 67 (3), 245 (2021).
O. V. Rudenko, P. V. Lebedev-Stepanov, V. A. Gusev, A. I. Korobov, B. A. Korshak, N. I. Odina, M. Yu. Izosimova, S. P. Molchanov, and M. V. Alfimov, Acoust. Phys. 56 (6), 935 (2010).
D. I. Makalkin, B. A. Korshak, and A. P. Brysev, Acoust. Phys. 63 (5), 590 (2017).
V. A. Gusev and O. V. Rudenko, Acoust. Phys. 56 (6), 861 (2010).
V. A. Gusev and D. A. Zharkov, Bull. Russ. Acad. Sci.: Phys. 85 (6), 626 (2021).
B. B. Badmaev, B. B. Damdinov, and T. S. Dembelova, Bull. Russ. Acad. Sci.: Phys. 79 (10), 1301 (2015).
D. N. Makarova, T. S. Dembelova, and B. B. Badmaev, Acoust. Phys. 66 (6), 613 (2020).
I. A. Viktorov, Sound Surface Waves in Solids (Nauka, Moscow, 1981) [in Russian].
V. A. Krasil’nikov and V. V. Krylov, Introduction into Physical Acoustics (Nauka, Moscow, 1984) [in Russian].
V. A. Gusev and P. A. Simonova, Phys. Wave Phenom. 23 (4), 268 (2015).
M. M. Vol’kenshtein and V. M. Levin, Sov. Phys. Acoust. 34 (4) 351 (1988).
O. V. Rudenko and S. I. Soluyan, Theoretical Foundations of Nonlinear Acoustics (Nauka, Moscow, 1975; Consultants Bureau, New York, 1977).
O. A. Vasilieva and O. V. Rudenko, Acoust. Phys. 66 (3), 235 (2020).
V. A. Gusev, in Proc. All-Russian Acoustical Conf. (POLITEKh-PRESS, St. Petersburg, 2020), p. 101 [in Russian].
L. P. Gor’kov, Sov. Phys. Dokl. 5 (6), 773 (1961).
Z. A. Gol’dberg, in Intense Ultrasonic Fields, Ed. by L. D. Rozenberg (Nauka, Moscow, 1968), p. 49 [in Russian].
V. E. Gusev and O. V. Rudenko, Sov. Phys. Acoust. 25 (6), 493 (1979).
O. V. Rudenko, in Nonlinear Problems of Oscillation Theory and Control Theory. Vibration Mechanics (Nauka, St. Petersburg, 2009), p. 402 [in Russian].
Funding
This work was supported by the Russian Foundation for Basic Research, project no. 20-02-00493.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
The authors declare that they have no conflicts of interest.
Additional information
Translated by N. Podymova
Rights and permissions
About this article
Cite this article
Gusev, V.A., Zharkov, D.A. Acoustic Fields and Radiation Forces Induced by a Standing Surface Wave in Layered Viscous Media. Acoust. Phys. 68, 549–563 (2022). https://doi.org/10.1134/S1063771022060045
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1063771022060045