Skip to main content
Log in

Acoustic Resonance Spectroscopy with an Uncalibrated Microwave Path

  • PHYSICAL ACOUSTICS
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

Acoustic resonance spectroscopy (ARS) is an informative analytical method that yields information about thicknesses and acoustic properties of layers in a multilayer structure representing a high-overtone bulk acoustic wave resonator (HBAR). Since the HBAR spectrum has many resonance features, the development of automatic methods for its processing is an urgent task. In this study, a method for extracting ARS data from a signal distorted by a RF measuring path without additional measurements of reference impedances (calibration) is proposed, which brings the spectrum to a form convenient for automatic processing and significantly expands the range of the ARS application. The method is especially relevant for processing HBAR spectra with a low excitation efficiency. As an example of such processing, the central frequencies and effective widths of more than a thousand resonant peaks are determined and, based on this, the frequency dependence of the acoustic attenuation is established for a new material: optical ceramics based on doped yttrium aluminum garnet nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. B. N. Krutov, G. D. Mansfel’d, and A. D. Freik, Sov. Phys. Acoust. 40 (4), 562 (1994).

    ADS  Google Scholar 

  2. G. D. Mansfel’d, S. G. Alekseev, and N. I. Polzikova, Acoust. Phys. 54 (4), 475 (2008).

    Article  ADS  Google Scholar 

  3. G. D. Mansfeld, Yu. V. Gulyaev, Z. Ya. Kosakovskaya, S. G. Alekseev, and V. V. Saraikin, Phys. Solid State 44 (4), 674 (2002).

    Article  ADS  Google Scholar 

  4. B. P. Sorokin, A. S. Novoselov, G. M. Kvashnin, N. V. Luparev, N. O. Asafiev, A. B. Shipilov, and V. V. Aksenenkov, Acoust. Phys. 65 (3), 263 (2019).

    Article  ADS  Google Scholar 

  5. A. V. Sotnikov, B. P. Sorokin, N. O. Asafiev, D. A. Shcherbakov, G. M. Kvashnin, Yu. Suhak, H. Fritze, M. Weihnacht, and H. Schmidt, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 68 (11), 3423 (2021).

    Article  Google Scholar 

  6. G. D. Mansfeld, S. G. Alekseev, and I. M. Kotelyansky, in Proc. 2001 IEEE Ultrasonics Symp. (IEEE, New York, 2001), Vol. 1, p. 415.

  7. G. D. Mansfeld, S. G. Alekseev, I. M. Kotelyanskii, and N. I. Polzikova, Acoust. Phys. 56 (6), 904 (2010).

    Article  ADS  Google Scholar 

  8. A. Migliori, J. L. Sarrao, W. M. Visscher, T. M. Bell, M. Lei, Z. Fisk, and R. G. Leisure, Phys. B: Cond. Matter 183 (1-2), 1 (1993).

    Article  ADS  Google Scholar 

  9. N. Polzikova, S. Alekseev, I. Kotelyanskii, A. Raevskiy, and Yu. Fetisov, J. Appl. Phys. 113 (17), 17C704-1 (2013).

  10. N. I. Polzikova, S. G. Alekseev, I. I. Pyataikin, V. A. Luzanov, A. O. Raevskiy, and V. A. Kotov, AIP Adv. 8 (5), 056128-1 (2018).

    Article  ADS  Google Scholar 

  11. S. G. Alekseev, S. E. Dizhur, N. I. Polzikova, V. A. Luzanov, A. P. Raevskiy, A. P. Orlov, V. A. Kotov, and S. A. Nikitov, Appl. Phys. Lett. 117 (7), 072408-1 (2020).

    Article  ADS  Google Scholar 

  12. F. O. Sergeev, S. G. Alekseev, I. M. Kotelyanskii, G. D. Mansfeld, and N. I. Polzikova, in Proc. 2008 IEEE Int. Ultrasonics Symp. (IUS) (IEEE, New York, 2008), p. 745.

  13. N. I. Polzikova, G. D. Mansfeld, S. G. Alekseev, I. M. Kotelyanskii, and F. O. Sergeev, in Proc. 2008 IEEE Int. Ultrasonics Symp. (IUS) (IEEE, New York, 2008), p. 2169.

  14. S. G. Alekseev, N. I. Polzikova, I. M. Kotelyanskii, and G. D. Mansfel’d, J. Commun. Technol. Electron. 60 (3), 300 (2015).

    Article  Google Scholar 

  15. S. G. Alekseev, V. A. Luzanov, and N. I. Polzikova, J. Commun. Technol. Electron. 65 (11), 1339 (2020).

    Article  Google Scholar 

  16. U. K. Bhaskar, D. Tierno, G. Talmelli, F. Ciubotaru, C. Adelmann, and T. Devolder, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 67 (6), 1284 (2020).

    Article  Google Scholar 

  17. V. J. Gokhale, B. D. Downey, D. S. Katzer, N. Nepal, A. C. Lang, R. M. Stroud, and D. J. Meyer, Nat. Commun. 11 (1), 2314-1 (2020).

    Article  ADS  Google Scholar 

  18. G. Kvashnin, B. Sorokin, N. Asafiev, V. Prokhorov, and A. Sotnikov, Electronics 11 (2), 176 (2022).

    Article  Google Scholar 

  19. J. D. N. Cheeke, Y. Zhang, and Z. Wang, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50 (3), 321 (2003).

    Article  Google Scholar 

  20. B. P. Sorokin, G. M. Kvashnin, A. S. Novoselov, V. S. Bormashov, A. V. Golovanov, S. I. Burkov, and V. D. Blank, Ultrasonics 78, 162 (2017).

    Article  Google Scholar 

  21. S. G. Alekseev and G. D. Mansfel’d, J. Commun. Technol. Electron. 53 (1) 113 (2008).

    Article  Google Scholar 

  22. G. S. Kino, Acoustic Waves: Devices, Imaging, and Analog Signal Processing (Prentice Hall, 1987; Mir, Moscow, 1990).

  23. S. G. Alekseev, G. D. Mansfeld, and N. I. Polzikova, J. Commun. Technol. Electron. 51 (8), 925 (2006).

    Article  Google Scholar 

  24. E. N. Khazanov, A. V. Taranov, S. G. Alekseev, and N. I. Polzikova, JETP 118 (1), 87 (2014).

    Article  ADS  Google Scholar 

Download references

Funding

This study was supported by the Ministry of Science and Higher Education of the Russian Federation as part of the state assignment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Alekseev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Bondareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alekseev, S.G., Luzanov, V.A., Raevsky, A.O. et al. Acoustic Resonance Spectroscopy with an Uncalibrated Microwave Path. Acoust. Phys. 69, 40–47 (2023). https://doi.org/10.1134/S106377102206001X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377102206001X

Keywords:

Navigation