Skip to main content
Log in

Synthesis of Bulk-Acoustic-Wave Bandpass Filters Taking into Account the Material Parameters of the Resonators Mulilayer Structure

  • PHYSICAL ACOUSTICS
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

The article proposes a method for synthesizing Chebyshev bandpass filters (BPFs), based on bulk-acoustic-wave resonators, taking into account the influence of electromechanical parameters of all layers of multilayer resonators. Classical synthesis of a prototype filter with additional reactive elements makes it possible to formulate requirements on the frequency properties of the resonators in a BPF in order to obtain uniform ripple in the transmission band. The method is supplemented by an analytical model of the input impedance of the bulk-acoustic-wave resonators, which takes into account the electroacoustic structural parameters, derived from an experimental study of test resonators. A third-order bandpass filter based on bulk acoustic resonators is synthesized as a multilayer structure, acoustically isolated from the substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. P. A. Tural’chuk, Ya. A. Kolmakov, A. V. Simin, D. V. Kholodnyak, and I. B. Vendik, Izv. Vyssh. Uchebn. Zaved., Radioelektron., No. 1, 65 (2005).

  2. D. V. Kholodnyak, A. V. Simin, A. V. Lapshin, and I. B. Vendik, Izv. Sankt-Peterburg. Gos. Elektrotekh. Univ. “LETI”, Ser. Radioelektron. Telekommun., No. 1, 47 (2004).

  3. K. M. Lakin, G. R. Kline, and K. T. McCarron, IEEE Trans. Microwave Theory Techn. 41 (12), 2139 (1993).

    Article  ADS  Google Scholar 

  4. M. Yu. Dvoesherstov and V. I. Cherednik, Acoust. Phys. 61 (6), 657 (2015).

    Article  ADS  Google Scholar 

  5. Y. Iwazaki, T. Yokoyama, T. Nishihara, and M. Ueda, Appl. Phys. Express 8 (6), 061501 (2015).

    Article  ADS  Google Scholar 

  6. B. P. Sorokin, A. S. Novoselov, G. M. Kvashnin, N. V. Luparev, N. O. Asaf’ev, A. B. Shipilov, and V. V. Aksenenkov, Acoust. Phys. 65 (3), 263 (2019).

    Article  ADS  Google Scholar 

  7. A. A. Shirakawa, J.-M. Pham, P. Jarry, and E. Kerherve, Proc. 35th IEEE European Microwave Conf. (Paris, 2005), Vol. 1, p. 1.

  8. L. Catherinot, S. Giraud, M. Chatras, S. Bila, D. Cros, T. Baron, S. Ballandras, L. Estagerie, and P. Monfraix, Int. J. RF Microwave Comput.-Aided Eng. 21 (5), 458 (2011).

    Article  Google Scholar 

  9. S.-Y. Tseng and R.-B. Wu, IEEE Access 7, 103456 (2019).

    Article  Google Scholar 

  10. E. Guerrero, P. Silveira, J. Verdu, Y. Yang, S. Gong, and P. De Paco, IEEE Trans. Microwave Theory Techn. 69, 629 (2020).

    Article  ADS  Google Scholar 

  11. Microwave Filters, Impedance-Matching Networks, and Coupling Structures, Ed. by G. L. Mattaei, L. Young, and E. M. T. Jones (McGraw-Hill, New York, 1964; Moscow: Mir, 1966).

  12. D. A. Berlincourt, D. R. Curran, and H. Jaffe, in Physical Acoustics. Principles and Methods, Ed. by W. P. Mason (Academic Press, New York, 1964; Moscow: Mir, 1966).

  13. J.-S. Lim and D. S. Park, IEEE Trans. Microwave Theory Techn. 45 (6), 898 (1997).

    Article  ADS  Google Scholar 

  14. Q. Yang, W. Pang, D. Zhang, and H. Zhang, J. Micromachines 7 (8), 133 (2016).

  15. A. Gimenez, J. Verdu, and P. D. P. Sanchez, IEEE Access 6, 47969 (2018).

    Article  Google Scholar 

  16. J. D. Larson, P. D. Bradley, S. Wartenberg, and R. C. Ruby, IEEE Ultrasonics Symp. 1, 863 (2000).

  17. J.-S. G. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications (Wiley & Sons, 2004).

    Google Scholar 

  18. P. Turalchuk, I. Vendik, O. Vendik, and J. Berge, in Proc. 37th European Microwave Conf. (EuMC) (Munich, 2007), p. 282.

  19. Yu. V. Gulyaev and G. D. Mansfel’d, Radiotekhnika (Moscow), No. 8, 42 (2003).

  20. M. Yu. Dvoesherstov, V. I. Cherednik, S. I. Bosov, I. Ya. Orlov, and O. V. Rudenko, Acoust. Phys. 59 (5), 513 (2013).

    Article  ADS  Google Scholar 

  21. I. B. Vendik, P. A. Turalchuk, O. G. Vendik, and J. Berge, J. Appl. Phys. 103 (1), 014107 (2008).

    Article  ADS  Google Scholar 

  22. B. P. Sorokin, A. V. Telichko, G. M. Kvashnin, V. S. Bormashov, and V. D. Blank, Acoust. Phys. 61 (6), 669 (2015).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to N.I. Katsavets and Svetlana-Rost for providing the experimental results, which are used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Turalchuk.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turalchuk, P.A., Vendik, I.B. Synthesis of Bulk-Acoustic-Wave Bandpass Filters Taking into Account the Material Parameters of the Resonators Mulilayer Structure. Acoust. Phys. 68, 569–574 (2022). https://doi.org/10.1134/S1063771022050116

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771022050116

Keywords:

Navigation