Skip to main content
Log in

Study of Propagation of Microwave Lamb Waves in a Piezoelectric Layered Structure

  • PHYSICAL ACOUSTICS
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

We have implemented a 1D and 2D simulation of excitation and propagation of Lamb waves in Al/AlN/(100)-diamond and Al-IDT/AlN/(100)-diamond piezoelectric layered structures (the last in a SAW resonator configuration), respectively. The distribution of elastic displacements in Lamb waves of different orders has been calculated, the mode types have been identified, and the dispersion dependences of the phase velocities have been studied including the excitation at ultrahigh frequencies. The phase velocity values calculated using the 1D and 2D models are in good agreement with those determined experimentally. We have shown that, above a synchronism frequency of an IDT, resonances which occur in these structures, are determined by excitation of Lamb waves in a substrate. The quality factor of these resonances is extremely higher than that on surface acoustic waves. This is confirmed by the experimental data. The amplitude-frequency responses and frequency dependences of the quality factor calculated using the 2D model are in good agreement with the experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. B. P. Sorokin, G. M. Kvashnin, A. V. Telichko, G. I. Gordeev, S. I. Burkov, and V. D. Blank, Acoust. Phys. 61 (4), 422 (2015).

    Article  ADS  Google Scholar 

  2. B. P. Sorokin, G. M. Kvashnin, A. S. Novoselov, V. S. Bormashov, A. V. Golovanov, S. I. Burkov, and V. D. Blank, Ultrasonics 78, 162 (2017).

    Article  Google Scholar 

  3. B. P. Sorokin, A. S. Novoselov, G. M. Kvashnin, N. V. Luparev, N. O. Asafiev, A. B. Shipilov, and V. V. Aksenenkov, Acoust. Phys. 65 (3), 263 (2019).

    Article  ADS  Google Scholar 

  4. E. Anderås, I. Katardjiev, and V. Yantchev, J. Micromech. Microeng. 21, 85010 (2011).

    Article  Google Scholar 

  5. H. Lamb, Proc. R. Soc. A 93, 114 (1917).

    ADS  Google Scholar 

  6. I. A. Viktorov, Physical Foundations of Rayleigh and Lamb Ultrasonic Waves Application (Nauka, Moscow, 1966) [in Russian].

    Google Scholar 

  7. S. I. Burkov, O. P. Zolotova, B. P. Sorokin, P. P. Turchin, and V. S. Talismanov, J. Acoust. Soc. Am. 143, 16 (2018).

    Article  ADS  Google Scholar 

  8. Y. Jin and S. G. Joshi, IEEE Trans. Ultrason., Ferroelectr. Freq. Control 41, 279 (1994).

    Article  Google Scholar 

  9. Y. Jin and S. G. Joshi, IEEE Trans. Ultrason., Ferroelectr. Freq. Control 43, 491 (1996).

    Article  Google Scholar 

  10. I. A. Borodina, S. G. Joshi, B. D. Zaitsev, and I. E. Kuznetsova, Acoust. Phys. 46 (1), 33 (2000).

    Article  ADS  Google Scholar 

  11. S. G. Joshi, B. D. Zaitsev, and I. E. Kuznetsova, Acoust. Phys. 47 (3), 282 (2001).

    Article  ADS  Google Scholar 

  12. I. E. Kuznetsova, B. D. Zaitsev, S. G. Joshi, and I. A. Borodina, IEEE Trans. Ultrason., Ferroelectr. Freq. Control 48, 322 (2001).

    Article  Google Scholar 

  13. I. E. Kuznetsova, B. D. Zaitsev, I. A. Borodina, A. A. Teplyh, V. V. Shurygin, and S. G. Joshi, Ultrasonics 42, 179 (2004).

    Article  Google Scholar 

  14. B. D. Zaitsev, I. E. Kuznetsova, I. A. Borodina, and S. G. Joshi, Ultrasonics 39, 51 (2001).

    Article  Google Scholar 

  15. V. I. Anisimkin, Acoust. Phys. 62 (2), 165 (2016).

    Article  ADS  Google Scholar 

  16. V. I. Anisimkin, E. Verona, A. S. Kuznetsova, and V. A. Osipenko, Acoust. Phys. 65 (2), 171 (2019).

    Article  ADS  Google Scholar 

  17. V. Yantchev and I. Katardjiev, J. Micromech. Microeng. 23, 043001 (2013).

    Article  ADS  Google Scholar 

  18. T. Kimura, M. Omura, Y. Kishimoto, and K. Hashimoto, IEEE Trans. Microwave Theory Tech. 67, 915 (2019).

    Article  ADS  Google Scholar 

  19. F. Laidoudi, F. Boubenider, M. Mebarki, F. Medjili, and F. Bettine, Acoust. Phys. 65 (3), 253 (2019).

    Article  ADS  Google Scholar 

  20. V. Plessky, S. Yandrapalli, P. J. Turner, L. G. Villanueva, J. Koskela, and R. B. Hammond, Electron. Lett. 55 (2), 98 (2019).

    Article  ADS  Google Scholar 

  21. G. Kvashnin, B. Sorokin, and S. Burkov, in Proc. 2020 Joint Conf. of the IEEE Int. Frequency Control Symp. and Int. Symp. on Applications of Ferroelectrics (IFCS-ISAF) (Keystone, CO, 2020), p. 1.

  22. G. M. Kvashnin, B. P. Sorokin, and S. I. Burkov, Acoust. Phys. 67 (1), 38 (2021).

    Article  ADS  Google Scholar 

  23. A. V. Sotnikov, H. Schmidt, M. Weihnacht, T. Yu. Chemekova, and Yu. N. Makarov, IEEE Trans. Ultrason., Ferroelectr. Freq. Control 57, 808 (2010).

    Article  Google Scholar 

  24. G. D. Mansfeld, S. G. Alekseev, and I. M. Kotelyansky, in Proc. IEEE Ultrasonic Symp. (Atlanta, GA, 2001).

    Google Scholar 

  25. G. I. Gordeev, G. M. Kvashnin, M. S. Kuznetsov, B. P. Sorokin, and A. V. Telichko, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 56 (7), 50 (2013).

    Google Scholar 

  26. E. Dieulesaint and D. Royer, Elastic Waves in Solids (Wiley, New York, 1980; Nauka, Moscow, 1982).

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. M. Kvashnin or B. P. Sorokin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kvashnin, G.M., Sorokin, B.P. & Burkov, S.I. Study of Propagation of Microwave Lamb Waves in a Piezoelectric Layered Structure. Acoust. Phys. 67, 590–596 (2021). https://doi.org/10.1134/S1063771021060051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771021060051

Keywords:

Navigation