Skip to main content
Log in

Local Anomalous Sound Field Zones in Shallow Water: Experiment and Simulation

  • OCEAN ACOUSTICS. HYDROACOUSTICS
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

The paper studies experimentally and theoretically the interference structure of the low-frequency spatial amplitude and phase responses of the scalar field and three projections of the vibrational velocity vector formed by tone signals from towed omnidirectional acoustic sources in zones near the interference maxima and minima of the sound pressure. The experimental dependences of these field characteristics on the distance obtained by four-component vector-scalar receivers when the sources are towed are compared with the calculated ones within the Pekeris model and waveguide model with a three-layer seafloor, the parameters of which were calculated based on acoustic calibration of the operations area. Satisfactory agreement was established between the amplitude and phase responses of the field, calculated by acoustic calibration and measured experimentally. It is shown that in the zones of maxima, a slow change in the angle of arrival is observed and the phase gradients are “smooth”, while in the zones of the minimum, sharp jumps in the amplitudes and phases form in the horizontal and vertical planes, leading for deep minima to the formation of circulations: local vortices around the poles. Numerical analysis of the fine structure of the sound pressure and vibrational velocity projections in the acoustic vortex zone is carried out, and hodographs of the vibrational velocity and phase gradients of the sound pressure are calculated, confirming the formation of vortices in the vertical plane in the zone of the poles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. V. A. Zhuravlev, I. K. Kobozev, and Yu. A. Kravtsov, Zh. Eksp. Teor. Fiz. 104 (5(11)), 3769 (1993).

    Google Scholar 

  2. V. A. Eliseevnin and Yu. I. Tuzhilkin, Acoust. Phys. 47 (6), 688 (2001).

    Article  ADS  Google Scholar 

  3. V. M. Kuz’kin, A. V. Ogurtsov, and V. G. Petnikov, Acoust. Phys. 44 (1), 77 (1998).

    ADS  Google Scholar 

  4. G. N. Kuznetsov, O. V. Lebedev, and A. N. Stepanov, Acoust. Phys. 62 (6), 717 (2016).

    Article  ADS  Google Scholar 

  5. N. I. Belova, G. N. Kuznetsov, and A. N. Stepanov, Acoust. Phys. 62 (3), 328 (2016).

    Article  ADS  Google Scholar 

  6. V. A. Shchurov, Chin. J. Acoust. 38 (2), 113 (2019).

    Google Scholar 

  7. V. A. Shchurov, V. P. Kuleshov, and A. V. Cherkasov, Acoust. Phys. 57 (6), 851 (2011).

    Article  ADS  Google Scholar 

  8. G. N. Kuznetsov, in Proc. 17th School-Seminar Named after L. M. Brekhovskikh, Academician Jointed with 33rd Session of Russian Acoustical Society. Ocean Acoustics (Shirshov Institute of Oceanology RAS, Moscow, 2020), p. 371 [in Russian].

  9. A. I. Belov and G. N. Kuznetsov, Acoust. Phys. 59 (6), 674 (2013).

    Article  ADS  Google Scholar 

  10. A. I. Belov and G. N. Kuznetsov, Acoust. Phys. 62 (2), 194 (2016).

    Article  ADS  Google Scholar 

  11. A. I. Belov and G. N. Kuznetsov, Fundam. Prikl. Gidrofiz. 8 (1), 68 (2015).

    Google Scholar 

  12. G. N. Kuznetsov and A. N. Stepanov, Acoust. Phys. 59 (3), 333 (2013).

    Article  ADS  Google Scholar 

  13. G. N. Kuznetsov and A. N. Stepanov, Acoust. Phys. 63 (6), 660 (2017).

    Article  ADS  Google Scholar 

  14. G. N. Kuznetsov and O. V. Lebedev, Acoust. Phys. 58 (5), 575 (2012).

    Article  ADS  Google Scholar 

  15. G. N. Kuznetsov and A. N. Stepanov, Acoust. Phys. 66 (4), 390 (2020). https://doi.org/10.1134/S1063771020040053

    Article  ADS  Google Scholar 

  16. G. A. Grachev and G. N. Kuznetsov, Sov. Phys. Acoust. 31 (5), 408 (1985).

    Google Scholar 

  17. L. M. Brekhovskikh and Yu. P. Lysanov, Theoretical Foundations of Ocean Acoustics (Nauka, Moscow, 2007) [in Russian].

  18. G. N. Kuznetsov, V. M. Kuz’kin, and S. A. Pereselkov, Gidroakustika, No. 34 (2), 26 (2018).

  19. G. N. Kuznetsov, V. M. Kuz’kin, and S. A. Pereselkov, Acoust. Phys. 63 (4), 449 (2017).

    Article  ADS  Google Scholar 

Download references

Funding

The study was supported by the program Shallow Water Acoustics, Nonlinear Acoustic Diagnostics, and Nonlinear Wave Dynamics (state registration no. AAAA-A18-118021390174-1) and the Russian Foundation for Basic Research (project no. 19-08-00941).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. N. Kuznetsov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, G.N., Semenova, I.V. & Stepanov, A.N. Local Anomalous Sound Field Zones in Shallow Water: Experiment and Simulation. Acoust. Phys. 67, 619–630 (2021). https://doi.org/10.1134/S106377102106004X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377102106004X

Keywords:

Navigation