Skip to main content
Log in

Development of Experimental Research of Turbulent Surface Pressure Fluctuations: Critical Analysis and Generalization of Accumulated Experimental Data

  • ATMOSPHERIC AND AEROACOUSTICS
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

The article reviews the current state of experimental research into near-wall turbulent pressures. In recent decades, a large number of applied, theoretical, and experimental research into near-wall turbulent pressures have been carried out, constituting an important part of turbulent flow acoustics. The presented data on near-wall turbulent pressure measurements show that the bulk of accumulated data pertains to the characteristics of turbulent pressure fluctuations under the turbulent boundary layer. In addition to an analysis of experimental data (frequency spectra, rms values), special attention is paid to the methodological aspects of experimental research. In applications, a significant number of linear problems of excitation of noise and vibrations of structures in a turbulent flow can be very effectively analyzed and solved with wavenumber-frequency spectra formulation of a hydroaerodynamic fluctuating load. These factors have increased attention towards the wavenumber-frequency spectra of near-wall turbulent pressures, which has not flagged in recent decades. Experimental research into the wavenumber-frequency spectra of turbulent pressures using digital signal processing has become increasingly widespread. Direct methods for measuring wavenumber-frequency spectra of near-wall turbulent pressures have been analyzed in detail. The results of experimental research of wavenumber-frequency spectra are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. S. Howe, Acoustics of Fluid-Structure Interactions (Univ. Press, Cambridge, 1998).

    MATH  Google Scholar 

  2. A. V. Smol’yakov, Noise Generated by Turbulent Flows (Krylov Institute, St. Petersburg, 2005) [in Russian].

    Google Scholar 

  3. E. B. Kudashev and L. R. Yablonik, Turbulent Near-Wall Pressure Pulsations (Nauchnyi mir, Moscow, 2007) [in Russian].

  4. W. K. Blake, Mechanics of Flow-Induced Sound and Vibration, Vol. 2: Complex Flow-Structure Interactions (Academic Press, 2017).

  5. A. Yu. Golubev, E. B. Kudashev, and L. R. Yablonik, Turbulent Pressure Pulsations in Acoustics and Aerohydrodynamics (Fizmatlit, Moscow, 2019) [in Russian].

    Google Scholar 

  6. Flinovia: Flow Induced Noise and Vibration Issues and Aspects-II, Ed. by E. Ciappi, F. Franco, J.-L. Guyader, S. A. Hambric, R. C. K. Leung, and A. D. Hanford (Springer, 2019). https://doi.org/10.1007/978-3-319-76780-2

    Book  Google Scholar 

  7. Flinovia: Flow Induced Noise and Vibration Issues and Aspects-III, Ed. by E. Ciappi, S. De Rosa, F. Franco, S. A. Hambric, R. C. K. Leung, V. Clair, L. Maxit, and N. Totaro (Springer Nature, 2021). https://doi.org/10.1007/978-3-030-64807-7

    Book  Google Scholar 

  8. W. W. Willmarth, J. Acoust. Soc. Am. 28, 1048 (1956).

    ADS  Google Scholar 

  9. H. R. Mull and J. S.Algranti, Preliminary Flight Survey of Aerodynamic Noise on an Airplane Wing, NACA Research Memorandum E55K07 (National Advisory Committee for Aeronautics, Washington, DC, 1956).

  10. W. W. Willmarth, Annu. Rev. Fluid Mech. 7, 13 (1975).

    ADS  Google Scholar 

  11. G. M. Corcos, J. Acoust. Soc. Am. 35 (2), 192 (1963).

    ADS  Google Scholar 

  12. A. V. Smol’yakov and V. M. Tkachenko, Turbulent Pulsation Measuring (Energiya, Leningrad, 1980) [in Russian].

    Google Scholar 

  13. B. M. Efimtsov, Sov. Phys. Acoust. 28 (4), 289 (1982).

    Google Scholar 

  14. B. M. Efimtsov, Sov. Phys. Acoust. 30 (1), 33 (1984).

    ADS  Google Scholar 

  15. A. V. Smol’yakov and V. M. Tkachenko, Sov. Phys. Acoust. 37 (6), 627 (1991).

    Google Scholar 

  16. M. K. Bull, J. Sound Vib. 190, 299 (1996).

  17. Y. Tsuji, J. H. M. Fransson, P. H. Alfredsson, and A. V. Johansson, J. Fluid Mech. 585, 1 (2007).

    ADS  Google Scholar 

  18. O. Robin, S. Moreau, and A. Berry, in Proc. 19th AIAA/CEAS Aeroacoustics Conf. (Berlin, May 27–29, 2013), AIAA Paper No. 2013-2058. https://doi.org/10.2514/6.2013-2058.

  19. É. Salze, C. Bailly, O. Marsden, E. Jondeau, and D. Juvé, in Proc. 20th AIAA/CEAS Aeroacoustics Conf. AIAA Aviation (Atlanta, GA, June 16–20, 2014).

  20. C. Schram and N. Van de Wyer, in Proc. AIAA Aviation Forum (Atlanta, GA, June 25–29, 2018).

  21. N. Hu and L. Erbig, in Proc. 20th AIAA/CEAS Aeroacoustics Conf. AIAA Aviation (Atlanta, GA, June 25–29, 2018).

  22. N. Hu and L. Erbig, AIAA J. 58 (7), 2964 (2020).

    ADS  Google Scholar 

  23. B. M. Efimtsov, A. Yu. Golubev, V. B. Kuznetsov, S. A. Rizzi, R. G. Rackl, and E. V. Andrianov, in Proc. 43rd AIAA Aerospace Sciences Meeting and Exhibition (Reno, NV, Jan. 10–13, 2005).

  24. M. Goody, AIAA J. 42, 1788 (2004).

    ADS  Google Scholar 

  25. Y. Rozenberg, G. Robert, and S. Moreau, AIAA J. 50 (10), 2168 (2012).

    ADS  Google Scholar 

  26. M. Kamruzzaman, D. Bekiropoulos, T. Lutz, W. Würz, and E. Krämer, Int. J. Aeroacoust. 14 (5–6), 833 (2015).

    Google Scholar 

  27. M. R. Catlett, J. M. Anderson, J. B. Forest, and D. O. Stewart, AIAA J. 54 (2), 569 (2016).

    ADS  Google Scholar 

  28. N. Hu and M. Herr, in Proc. 22nd AIAA/CEAS Aeroacoustics Conf. (Lyon, May 30–June 1, 2016), AIAA Paper No. 2016-2749.

  29. N. Hu, AIAA J. 56 (9), 3491 (2018).

    ADS  Google Scholar 

  30. S. Lee, AIAA J. 56 (5), 1818 (2018).

    ADS  Google Scholar 

  31. P. H. Alfredsson, A. V. Johansson, J. H. Haritonidis, and H. Eckelmann, Phys. Fluids 31 (5), 1026 (1988).

    ADS  Google Scholar 

  32. I. Marusic, R. Mathis, and N. Hutchins, J. Phys.: Conf. Ser. 318, 012003 (2011). https://doi.org/10.1088/1742-6596/318/1/012003

    Article  Google Scholar 

  33. K. A. Naugol’nykh and S. A. Rybak, Sov. Phys. Acoust. 26 (6), 502 (1980).

    ADS  Google Scholar 

  34. S. A. Rybak, Acoust. Phys. 47 (5), 629 (2001).

    ADS  Google Scholar 

  35. E. M. Greshilov and M. A. Mironov, Sov. Phys. Acoust. 29 (4), 275 (1983).

    ADS  Google Scholar 

  36. E. M. Greshilov, M. A. Mironov, and V. G. Tkachenko, Sov. Phys. Acoust. 34 (1), 32 (1988).

    Google Scholar 

  37. B. M. Efimtsov, V. V. Zosimov, A. V. Romashov, and S. A. Rybak, Acoust. Phys. 49 (1), 113 (2003).

    ADS  Google Scholar 

  38. Z. Hu, C. L. Morfey, and N. D. Sandham, in Proc. 12th AIAA/CEAS Aeroacoustics Conf. (27th AIAA Aeroacoustics Conf.) (Cambridge, MA, May 8–10, 2006), AIAA Paper No. 2006-2412.

  39. C. Diaz-Daniel, S. Laizet, and J. C. Vassilico, Phys. Fluids 29, 055102 (2017). https://doi.org/10.1063/1.4984002

    Article  ADS  Google Scholar 

  40. D. M. Chase, J. Sound Vib. 70 (1), 29 (1980).

  41. D. M. Chase, J. Sound Vib. 112 (1), 125 (1987).

  42. A. V. Smol’yakov, Acoust. Phys. 52 (3), 331 (2006).

    ADS  Google Scholar 

  43. P. D. Lysak, W. K. Bonness, and J. B. Fahnline, in Flinovia – Flow Induced Noise and Vibration Issues and Aspects-II (Springer, 2019), p. 3.

    Google Scholar 

  44. A. Caiazzo, R. D’Amico, and W. Desmet, in Flinovia – Flow Induced Noise and Vibration Issues and Aspects-II (Springer, 2019), p. 17.

    Google Scholar 

  45. A. Frendi and M. Zhang, J. Vib. Acoust. 142 (2), 021018 (2019). https://doi.org/10.1115/1.4045771

    Article  Google Scholar 

  46. R. G. De Jong, in Flinovia-Flow Induced Noise and Vibration Issues and Aspects-III (Springer, 2021), p. 27.

    Google Scholar 

  47. W. K. Blake and D. M. Chase, J. Acoust. Soc. Am. 49, 862 (1971).

    ADS  Google Scholar 

  48. V. M. Tkachenko, A. V. Smol’yakov, V. A. Kolyshnitsyn, and V. P. Marshov, Acoust. Phys. 54 (1), 109 (2008).

    ADS  Google Scholar 

  49. P. W. Jameson, J. Acoust. Soc. Am. 51 (1A), 95 (1972). https://doi.org/10.1121/1.1981719

    Article  ADS  Google Scholar 

  50. N. C. Martin and P. Leehey, J. Sound Vib. 52 (1), 95 (1977).

  51. A. Yu. Golubev, Acoust. Phys. 58 (4), 396 (2012).

    ADS  Google Scholar 

  52. D. Lecoq, C. Pezerat, F. Chevillotte, and R. Bessis, J. Acoust. Soc. Am. 140 (3), 1974 (2016).

    ADS  Google Scholar 

  53. C. Pezerat, O. Grosset, J. Carpentier, J.-H. Thomas, and F. Ablitzer, in Flinovia – Flow Induced Noise and Vibration Issues and Aspects-II (Springer, 2019), p. 39.

    Google Scholar 

  54. C. H. Sherman, S. H. Ko, and B. G. Buehler, J. Acoust. Soc. Am. 88, 386 (1990).

    ADS  Google Scholar 

  55. B. M. Abraham and W. L. Keith, J. Fluids Eng. 120 (1), 29 (1998).

    Google Scholar 

  56. B. Arguillat, D. Ricot, G. Robert, and C. Bailly, in Proc. 11th AIAA/CEAS Aeroacoustics Conf. (26th AIAA Aeroacoustics Conf.) (Monterey, CA, May 23–25, 2005), AIAA Paper No. 2005-2855.

  57. B. Arguillat, D. Ricot, G. Robert, C. Bailly, and G. Robert, J. Acoust. Soc. Am. 128, 1647 (2010).

    ADS  Google Scholar 

  58. É. Salze, C. Bailly, O. Marsden, E. Jondeau, and D. Juvé, in Proc. AIAA Aviation Forum, 21th AIAA/CEAS Aeroacoustics Conf. (Dallas, TX, June 22–26, 2015).

  59. S. L. Prigent, R. Engelman, É. Salze, and C. Bailly, in Proc. AIAA Aviation Forum, AIAA/CEAS Aeroacoustics Conf. (Atlanta, GA, June 25–29, 2018).

  60. S. L. Prigent, É. Salze, and C. Bailly, AIAA J. 58 (1) (2020).

  61. S. N. Panov, in Proc. 7th All-Russian Conf. Noise & Vibration (Grand Rapids, MI, 2019), p. 183.

  62. E. Salze, E. Jondeau, A. Pereira, S. L. Prigent, and C. Bailly, in Proc. 25th AIAA/CEAS Aeroacoustics Conf. (Delft, May 20–23, 2019).

  63. S. L. Prigent, E. Salze, E. Jondeau, and C. Bailly, Exp. Fluids 61, 201 (2020). https://doi.org/10.1007/s00348-020-03017-2

    Article  Google Scholar 

  64. Q. Leclere, A. Dinsenmeyer, E. Salze, and J. Antoni, in Flinovia – Flow Induced Noise and Vibration Issues and Aspects-III (Springer Nature Switzerland AG, 2021), p. 181.

    Google Scholar 

  65. E. B. Kudashev, Acoust. Phys. 49 (5), 545 (2003).

    ADS  Google Scholar 

  66. E. B. Kudashev and L. R. Yablonik, Acoust. Phys. 66 (6), 633 (2020).

    ADS  Google Scholar 

  67. J. W. Gregory, H. Sakaue, T. Liu, and J. P. Sullivan, Annu. Rev. Fluid Mech. 46, 303 (2014).

    ADS  Google Scholar 

  68. J. Panda, N. H. Roozeboom, and J. C. Ross, in Proc. AIAA SciTech 2017 (Grapevine, TX, January 9–13, 2017).

  69. J. Panda, N. H. Roozeboom, and J. C. Ross, AIAA J. 57 (5), 1 (2019).

    Google Scholar 

Download references

Funding

The study was supported by the Russian Foundation for Basic Research (project no. 20-02-00181A).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. B. Kudashev or L. R. Yablonik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kudashev, E.B., Yablonik, L.R. Development of Experimental Research of Turbulent Surface Pressure Fluctuations: Critical Analysis and Generalization of Accumulated Experimental Data. Acoust. Phys. 67, 631–639 (2021). https://doi.org/10.1134/S1063771021060038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771021060038

Keywords:

Navigation