Skip to main content
Log in

Estimating the Range to the Source in the Deep Sea Using the Spatial Frequency Responses of the Interference Invariant and Effective Phase and Group Velocities

  • OCEAN ACOUSTICS. HYDROACOUSTICS
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

The amplitude–phase structure and interferograms of the sound pressure and effective phase and group velocities in acoustically bright zones and deep ocean shadow zone are investigated. Analysis of the angular structure of interferograms on the frequency–range plane made it possible to establish that the effective phase and group velocities are functionally and analytically related to the Chuprov interference invariant and have an identical frequency-spatial structure, which makes it possible to calculate the invariant range dependences of this invariant and effective velocities, as well as to perform high-precision direction finding and estimate the ranges to sources located in the shadow zone. It is shown that the range dependences of the interference invariant and effective velocities are determined by the type of dominant normal waves and change significantly when passing from the near field to the shadow zone and to the far acoustically bright zone. In the shadow zone, the effective phase and group velocities differ markedly from the average sound speed in water, while in zones with dominant water modes, they are nearly equal to the average sound speed in water. It is shown that in a waveguide with a known depth when vertically distributed arrays are used, the values of the interference invariant and effective velocities can be calculated using the measured angle of arrival of the signal reflected from the bottom. This makes it possible to calculate the range of the source and obtain unbiased bearing estimates, which are independent of the source and receiver depths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. L. M. Brekhovskikh and Yu. P. Lysanov, Theoretical Foundations for Ocean Acoustics (Nauka, Moscow, 2007) [in Russian].

  2. R. J. Urick, Principles of Underwater Sound (McGraw Hill Book Co., 1975; Sudostroenie, Leningrad, 1978).

  3. Yu. A. Koryakin, S. A. Smirnov, and G. V. Yakovlev, Ship Hydroacoustics Equipment. State and Topical Problems (Nauka, St. Petersburg, 2004) [in Russian].

    Google Scholar 

  4. G. A. Grachev and G. N. Kuznetsov, Sov. Phys. Acoust. 31 (2), 154 (1985).

    Google Scholar 

  5. G. N. Kuznetsov and O. V. Lebedev, Acoust. Phys. 58 (5), 575 (2012).

    Article  ADS  Google Scholar 

  6. S. P. Aksenov, in Proc. 32nd Session of Russian Acoustical Society (GEOS, Moscow, 2019), p. 389 [in Russian].

  7. S. D. Chuprov, Ocean Acoustics: State-of-the-Art (Nauka, Moscow, 1982), p. 71 [in Russian].

    Google Scholar 

  8. E. F. Orlov and G. A. Sharonov, Sonic Waves Interference in the Ocean (Dal’nauka, Vladivostok, 1998), p. 8 [in Russian].

    Google Scholar 

  9. G. A. Grachev, Sov. Phys. Acoust. 39 (1), 33 (1993).

    ADS  Google Scholar 

  10. G. D’Spain and W. Kuperman, J. Acoust. Soc. Am. 106 (5), 2454 (1999).

    Article  ADS  Google Scholar 

  11. L. Kevin, K. Cockrell, and H. Schmidt, J. Acoust. Soc. Am. 127 (5), 2780 (2010).

    Article  ADS  Google Scholar 

  12. Z. Zhao, J. Wu, and E. Shang, J. Acoust. Soc. Am. 138 (1), 223 (2015).

    Article  ADS  Google Scholar 

  13. K. Cockrell and H. Schmidt, J. Acoust. Soc. Am. 130 (1), 72 (2011).

    Article  ADS  Google Scholar 

  14. H. Song and C. Cho, J. Acoust. Soc. Am. 138 (2), 899 (2015).

    Article  ADS  Google Scholar 

  15. S. P. Aksenov and G. N. Kuznetsov, Phys. Wave Phenom. 29 (1), 81 (2021).

    Article  ADS  Google Scholar 

  16. G. A. Grachev and G. N. Kuznetsov, Sov. Phys. Acoust. 32 (2), 151 (1986).

    Google Scholar 

  17. B. A. Kasatkin and G. V. Kosarev, Vestn. Dal’nevost. Otd. Ross. Akad. Nauk, No. 3 (78), 41 (1998).

    Google Scholar 

  18. A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE, New York, 1988).

    MATH  Google Scholar 

  19. G. N. Kuznetsov, V. M. Kuz’kin, and S. A. Pereselkov, Gidroakustika, No. 31(3), 23 (2017).

  20. G. N. Kuznetsov, V. M. Kuz’kin, and S. A. Pereselkov, Acoust. Phys. 63 (4), 449 (2017).

    Article  ADS  Google Scholar 

Download references

Funding

This study was supported by the program “Shallow Water Acoustics, Nonlinear Acoustic Diagnostics, Nonlinear Wave Dynamics” (state registration no. AAAA-A18-118021390174-1), the Russian Foundation for Basic Research (project no. 19-08-00941), and the Ministry of Science and Higher Education of the Russian Federation under a state task (project no. 0852-2020-0015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. N. Kuznetsov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aksenov, S.P., Kuznetsov, G.N. Estimating the Range to the Source in the Deep Sea Using the Spatial Frequency Responses of the Interference Invariant and Effective Phase and Group Velocities. Acoust. Phys. 67, 597–609 (2021). https://doi.org/10.1134/S1063771021060014

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771021060014

Keywords:

Navigation