Skip to main content
Log in

Resolution of Rippled Spectra at Various Center Frequencies and Bandwidths of Sound Stimuli

  • ACOUSTICS OF LIVING SYSTEMS. BIOMEDICAL ACOUSTICS
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

Sound stimuli with rippled spectra are usable for testing the frequency resolving power of hearing. Estimates of the resolution depend on the center frequency and bandwidth of the test stimulus. In the present study, ripple density resolution was measured at various center frequencies and various bandwidths in two experimental paradigms: with the use of rippled or flat reference signals. With rippled reference signals, there was no statistically significant resolution dependence on either the center frequency or bandwidth. In all cases, the resolution was near 10 ripples/oct. With flat (nonrippled) reference signals, the ripple density resolution depended on both the center frequency and bandwidth: the higher the center frequency and the wider the frequency band, the higher the resolution was. The difference between resolution estimates obtained with different reference signals may be explained by different contributions of the spectral and temporal mechanisms of frequency analysis. The spectral (excitation pattern) mechanism is effective for discriminating between a rippled test and a rippled reference signal. The temporal processing mechanism is effective for discriminating between a rippled test and a flat reference signal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. F. A. Bilsen and R. J. Ritsma, J. Acoust. Soc. Am. 47, 469 (1970).

    Article  ADS  Google Scholar 

  2. W. A. Yost, J. Acoust. Soc. Am. 100, 3329 (1996).

    Article  ADS  Google Scholar 

  3. W. A. Yost and R. Hill, J. Acoust. Soc. Am. 64, 485 (1978).

    Article  ADS  Google Scholar 

  4. W. A. Yost, R. Hill, and T. Perez-Falcon, J. Acoust. Soc. Am. 63, 1166 (1978).

    Article  ADS  Google Scholar 

  5. A. Y. Supin, V. V. Popov, O. N. Milekhina, and M. B. Tarakanov, Hear. Res. 78, 31 (1994).

    Article  Google Scholar 

  6. A. Y. Supin, V. V. Popov, O. N. Milekhina, and M. B. Tarakanov, Hear. Res. 108, 17 (1997).

    Article  Google Scholar 

  7. A. Y. Supin, V. V. Popov, O. N. Milekhina, and M. B. Tarakanov, J. Acoust. Soc. Am. 103, 2042 (1998).

    Article  ADS  Google Scholar 

  8. A. Y. Supin, V. V. Popov, O. N. Milekhina, and M. B. Tarakanov, J. Acoust. Soc. Am. 106, 2800 (1999).

    Article  ADS  Google Scholar 

  9. A. Y. Supin, V. V. Popov, O. N. Milekhina, and M. B. Tarakanov, Hear. Res. 151, 157 (2001).

    Article  Google Scholar 

  10. O. N. Milekhina, D. I. Nechaev, and A. Y. Supin, Hum. Physiol. 44, 357 (2018).

    Article  Google Scholar 

  11. L. K. Rimskaya-Korsakova, M. R. Lalayants, A. Ya. Supin, and G. A. Tavartkiladze, Acoust. Phys. 57 (1), 106 (2011).

    Article  ADS  Google Scholar 

  12. B. A. Henry and C. W. Turner, J. Acoust. Soc. Am. 113, 2861 (2003).

    Article  ADS  Google Scholar 

  13. J. H. Won, W. R. Drennan, and J. T. Rubinstein, J. Assoc. Res. Otolaryngol. 8, 384 (2007).

    Article  Google Scholar 

  14. A. A. Saoji, L. Litvak, A. J. Spahr, and D. A. Eddins, J. Acoust. Soc. Am. 126, 955 (2009).

    Article  ADS  Google Scholar 

  15. E. S. Anderson, D. A. Nelson, H. Kreft, P. B. Nelson, and A. J. Oxenham, J. Acoust. Soc. Am. 130, 364 (2011).

    Article  ADS  Google Scholar 

  16. E. K. Jeon, C. W. Turner, S. A. Karsten, B. A. Henry, and B. J. Gantz, J. Acoust. Soc. Am. 138, 2350 (2015).

    Article  ADS  Google Scholar 

  17. V. K. Narne, B. Van Dun, S. Bansal, L. Prabhu, and B. C. J. Moore, J. Acoust. Soc. Am. 140, 4298 (2016).

    Article  ADS  Google Scholar 

  18. B. R. Glasberg and B. C. J. Moore, Hear. Res. 47, 103 (1990).

    Article  Google Scholar 

  19. K. Krumbholz, R. D. Patterson, and A. Nobbe, J. Acoust. Soc. Am. 110, 2096 (2001).

    Article  ADS  Google Scholar 

  20. R. D. Patterson, S. Handel, W. A. Yost, and A. J. Datta, J. Acoust. Soc. Am. 100, 3286 (1996).

    Article  ADS  Google Scholar 

  21. W. A. Yost, R. D. Patterson, and S. Sheft, J. Acoust. Soc. Am. 99, 1066 (1996).

    Article  ADS  Google Scholar 

  22. E. S. Anderson, A. J. Oxenham, P. B. Nelson, and D. A. Nelson, J. Acoust. Soc. Am. 132, 3925 (2012).

    Article  ADS  Google Scholar 

  23. D. I. Nechaev, O. N. Milekhina, and A. Ya. Supin, Trends Hear. 23, 1 (2019).

    Google Scholar 

  24. O. N. Milekhina, D. I. Nechaev, and A. Ya. Supin, J. Acoust. Soc. Am. 146, 2231 (2019).

    Article  ADS  Google Scholar 

  25. H. Levitt, J. Acoust. Soc. Am. 49, 467 (1971).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We appreciate English editing by American Journal Experts.

Funding

The study was supported by the Russian Science foundation, Grant 16-15-00046, and the Russian Foundation for Basic Research, Grant 20-015-00054 to AYS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ya. Supin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milekhina, O.N., Nechaev, D.I., Tomozova, M.S. et al. Resolution of Rippled Spectra at Various Center Frequencies and Bandwidths of Sound Stimuli. Acoust. Phys. 67, 553–561 (2021). https://doi.org/10.1134/S1063771021050092

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771021050092

Keywords:

Navigation