Skip to main content
Log in

Experiments on Multiple-point Room Equalization Applied to Medium-sized Enclosed Spaces

  • ROOM ACOUSTICS. MUSICAL ACOUSTICS
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

Several solutions for multiple-point acoustic magnitude equalization of medium-sized enclosed spaces are analyzed comparatively. The main design steps are discussed: derivation of the room acoustic prototype, an average of the transfer functions obtained for individual listening points; synthesis of the equalizing filter; characterization of the resulting equalized acoustic chain. First, two approaches for designing the equalizer are presented: a classical synthesis method, which employs the Levinson–Durbin algorithm (LD), and a newer one, based on a genetic algorithm (GA) tailored for the synthesis of FIR filters. Frequency warping able to “stretch” the narrow low-frequency octaves is also considered. A novel experimental setup is proposed to ensure that the equalized acoustic chain’s characterization is performed at the same signal level as the un-equalized chain. A new Figure-of-Merit is introduced that allows for a simple yet intuitive comparison of various equalizing solutions considering both the frequency characteristic and the spatial spread between multiple audition points. Finally, experimental data are presented and analyzed: four equalization solutions (LD- or GA-based, with or without frequency warping) were derived for each of three medium-sized enclosed spaces, with audition areas between 36 and 105 m2, and reverberation times ranging from 0.7 to 3.8 s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. H. Kuttruff, Room Acoustics (Spon Press, London, 2009).

    Google Scholar 

  2. F. Everest, The Master Handbook of Acoustic, 5th ed. (McGraw Hill, New York, 2009).

    Google Scholar 

  3. J. Hatziantoniou and J. Mourjopoulos, J. Audio Eng. Soc. 52 (9). 883 (2004).

    Google Scholar 

  4. M. Karjalainen, T. Paatero, J. Mourjopoulos, and P. Hatziantoniou, in Proc. Workshop on Applications of Signal Processing to Audio and Acoustics (New York, 2005), p. 183.

  5. T. P. M. Karjalainen, EURASIP J. Adv. Signal Process., Art. No. 058358 (2007).

  6. J. Mourjopoulos, Audio Eng. Soc. 42 (11), 884 (1994).

    Google Scholar 

  7. A. Mertins, T. Mei, and M. Kallinger, IEEE Trans. Speech Audio Process. 5 (4), 325 (2010).

    Google Scholar 

  8. S. Elliot and P. Nelson, J. Audio Eng. Soc. 37 (11), 899 (1989).

    Google Scholar 

  9. Y. Haneda, S. Makino, and Y. Kaneda, IEEE Trans. Speech Audio Process. 5 (4), 325 (1997).

    Article  Google Scholar 

  10. S. Cecchi, L. Palestini, P. Peretti, F. Piazza, and A. Carini, in Proc. 6th Int. Symp. on Image and Signal Processing and Analysis (Salzburg, 2009).

  11. A. Carini, S. Cecchi, F. Piazza, I. Omiciuolo, and G. Sicuranza, IEEE Trans. Audio, Speech, Lang. Process. 20 (1), 122 (2012).

    Article  Google Scholar 

  12. S. Cecchi, L. Palestini, P. Peretti, L. Romoli, F. Piazza, and A. Carini, J. Audio Eng. Soc. 59 (3), 110 (2011).

    Google Scholar 

  13. S. Cecchi, L. Romoli, F. Piazza, B. Bank, and A. Carini, in Proc. Audio Engineering Society Int. Convention (Berlin, 2014).

  14. S. Bharitkar and C. Kyriakakis, in Proc. 36th IEEE Asilomar Conf. (Pacific Grove, 2002).

  15. S. Bharitkar and C. Kyriakakis, in Proc. Workshop on the Applications of Signal Processing to Audio and Acoustics (New York, 2001).

  16. S. Bharitkar and C. Kyriakakis, IEEE Trans. Audio, Speech, Lang. Process. 15 (2), 542 (2007).

    Article  Google Scholar 

  17. S. Cecchi, A. Carini, and S. Spors, Appl. Sci. 8 (1), 1 (2017).

    Article  Google Scholar 

  18. S. Neely and J. Allen, J. Acoust. Soc. Am. 66 (1), 165 (1979).

    Article  ADS  Google Scholar 

  19. J. Mourjopoulos, P. Clarkson, and J. Hammond, in Proc. Int. Conf. on Acoustics, Speech, and Signal Processing ICASSP’82 (Paris, 1982).

  20. A. A. Mal’tsev, R. O. Maslennikov, A. V. Khoryaev, and V. V. Cherepennikov, Acoust. Phys. 51 (2), 195 (2005).

    Article  ADS  Google Scholar 

  21. L. Lu and B. Zhang, Acoust. Phys. 52 (6), 701 (2006).

    Article  ADS  Google Scholar 

  22. V. D. Koshur and M. S. Fadeeva, Acoust. Phys. 53 (6), 742 (2007).

    Article  ADS  Google Scholar 

  23. F. Toole, Sound Reproduction. Loudspeakers and Rooms (Elsevier, Oxford, 2008).

    Google Scholar 

  24. E. Szopos, M. Neag, I. Saracut, V. Popescu, and M. Topa, Circuits, Syst. Signal Process. 35 (1), 253 (2016).

    Article  Google Scholar 

  25. A. Oppenheim, D. Johnson, and K. Steiglitz, Proc. IEEE 52 (2), 299 (1971).

    Article  Google Scholar 

  26. A. Härmä, M. Karjalainen, L. Savioja, V. Välimäki, U. K. Laine, and J. Huopaniemi, J. Audio Eng. Soc. 48 (11), 1011 (2000).

    Google Scholar 

  27. Nonuniform Sampling, Theory and Practise, Ed. by F. Marvast (Kluwer Acad. Publ., 2001).

    Google Scholar 

  28. L. Davis, Handbook of Genetic Algorithms, Ed. by V. N. Reinhold (Michigan, 1991).

    Google Scholar 

  29. A. Farina, Proc. AES 122nd Convention (Vienna, 2007).

  30. A. Farina, AURORA. http://pcfarina.eng.unipr.it/Aurora_XP/index.htm.

  31. I. Mateljan, ARTA. http://www.artalabs.hr/.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. A. Fărcaș.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fărcaș, C.A., Szopos, E., Sărăcuț, I. et al. Experiments on Multiple-point Room Equalization Applied to Medium-sized Enclosed Spaces. Acoust. Phys. 67, 537–552 (2021). https://doi.org/10.1134/S106377102105002X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377102105002X

Keywords:

Navigation