Skip to main content
Log in

Conversion of Thermooptically Excited Broadband Pulses of Longitudinal Acoustic Waves into Pulses of Shear Waves in an Isotropic Solid Plate in a Liquid

  • PHYSICAL ACOUSTICS
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

We have theoretically studied the time profiles of broadband pulses of shear acoustic waves obtained as a result of conversion of thermooptically excited longitudinal-wave pulses incident at various angles onto a plane-parallel isotropic solid plate immersed in a liquid. It has been shown that at a certain angle of incidence, the time profile of the shear-wave pulse in a plate repeats the profile of the incident longitudinal-wave pulse. To compare the theoretical and experimental results, we studied conversion of thermooptically excited longitudinal-wave pulses into shear-wave pulses and back in an aluminum and fused silica plane–parallel plate immersed in distilled water. The experimental time profiles of ultrasonic pulses coincide with theoretically calculated profiles except for an increased duration of the experimental pulses. Based on this double transformation scheme, we have proposed and experimentally realized the method of broadband acoustic spectroscopy of longitudinal and shear waves with a laser thermooptical source of ultrasound in the 1–40 MHz frequency range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. E. P. Papadakis, in Physical Acoustics, Ed. by W. P. Mason and R. N. Thurston (Acad. Press, New York, 1976), Vol. 12, p. 277.

    Google Scholar 

  2. D. W. Fitting and L. Adler, Ultrasonic Spectral Analysis for Nondestructive Evaluation (Plenum Press, New York, 1981).

    Book  Google Scholar 

  3. A. Vary, in Nondestructive Testing Handbook. Ultrasonic Testing, Ed. by P. O. Moore (ASTM, Columbus, 2007), p. 365.

    Google Scholar 

  4. F. E. Stanke and G. S. Kino, J. Acoust. Soc. Am. 75 (3), 665 (1984).

    Article  ADS  Google Scholar 

  5. R. L. Weaver, J. Mech. Phys. Solids 38 (1), 55 (1990).

    Article  MathSciNet  ADS  Google Scholar 

  6. V. G. Bykov, Acoust. Phys. 43 (3), 277 (1997).

    ADS  Google Scholar 

  7. R. B. Thompson, F. J. Margetan, P. Haldipur, L. Yu, A. Li, P. Panetta, and H. Wasan, Wave Motion 45, 655 (2008).

    Article  Google Scholar 

  8. N. Ye. Nikitina, Acoust. Phys. 56 (6), 919 (2010).

    Article  ADS  Google Scholar 

  9. I. S. Koltsova, A. S. Khomutova, and M. A. Deinega, Acoust. Phys. 62 (2), 187 (2016).

    Article  ADS  Google Scholar 

  10. D. Nicoletti and A. Anderson, J. Acoust. Soc. Am. 101 (3), 686 (1997).

    Article  ADS  Google Scholar 

  11. X.-G. Zang, W. A. Simpson, J. M. Vitek, D. J. Barnard, L. J. Tweed, and J. Foley, J. Acoust. Soc. Am. 116 (1), 109 (2004).

    Article  ADS  Google Scholar 

  12. C. Layman, N. S. Murthy, R.-B. Yang, and J. Wu, J. Acoust. Soc. Am. 119 (3), 1449 (2006).

    Article  ADS  Google Scholar 

  13. V. E. Gusev and A. A. Karabutov, Laser Optical Acoustics (Nauka, Moscow, 1991) [in Russian].

    Google Scholar 

  14. B. R. Tittmann, R. S. Linebarger, and R. C. Addison, Jr., J. Nondestr. Eval. 9 (4), 229 (1990).

    Google Scholar 

  15. A. A. Karabutov and N. B. Podymova, Mech. Compos. Mater. 31 (3), 301 (1995).

    Article  ADS  Google Scholar 

  16. J. P. Monchalin, in Quantitative Nondestructive Evaluation, Ed. by D. O. Thompson and D. E. Chimenti (American Institute of Physics, New York, 2004), Vol. 700, p. 3.

    Google Scholar 

  17. A. A. Karabutov, N. B. Podymova, and I. O. Belyaev, Acoust. Phys. 59 (6), 667 (2013).

    Article  ADS  Google Scholar 

  18. R. I. Vorobyev, I. V. Sergeichev, A. A. Karabutov, E. A. Mironova, E. V. Savateeva, and I. Sh. Akhatov, Acoust. Phys. 66 (2), 132 (2020).

    Article  ADS  Google Scholar 

  19. N. B. Podymova and A. A. Karabutov, Acoust. Phys. 67 (1), 47 (2021).

    Article  ADS  Google Scholar 

  20. J. D. Aussel and J. P. Monchalin, Ultrasonics 27 (3), 165 (1989).

    Article  Google Scholar 

  21. S. Y. Zhang, M. Paul, S. Fassbender, U. Schleichert, and W. Arnold, Res. Nondestr. Eval., No. 2, 143 (1990).

  22. L. M. Brekhovskii, Waves in Layered Mediums (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  23. Physical Quantities. Handbook, Ed. by I. S. Grigor’ev and E. Z. Meilikhov (Energoatomizdat, Moscow, 1991) [in Russian].

    Google Scholar 

  24. S. I. Rokhlin and W. Wang, J. Acoust. Soc. Am. 91 (6), 3303 (1992).

    Article  ADS  Google Scholar 

  25. A. A. Karabutov, I. M. Kershtein, I. M. Pelivanov, and N. B. Podymova, Mech. Compos. Mater. 34 (6), 575 (1998).

    Article  ADS  Google Scholar 

  26. N. B. Podymova, I. E. Kalashnikov, L. K. Bolotova, and L. I. Kobeleva, Ultrasonics 99, 105959 (2019).

    Article  Google Scholar 

  27. A. A. Karabutov, N. B. Podymova, and Yu. G. Sokolovskaya, Acoust. Phys. 65 (2), 158 (2019).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. B. Podymova.

Additional information

Translated by N. Podymova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Podymova, N.B., Karabutov, A.A. Conversion of Thermooptically Excited Broadband Pulses of Longitudinal Acoustic Waves into Pulses of Shear Waves in an Isotropic Solid Plate in a Liquid. Acoust. Phys. 67, 465–473 (2021). https://doi.org/10.1134/S1063771021040114

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771021040114

Keywords:

Navigation