Skip to main content
Log in

Methods for Estimating the Reduced Noise of a Moving Monopole Source in Shallow Water

  • OCEAN ACOUSTICS. HYDROACOUSTICS
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

The article demonstrates the possibility of evaluating the sound pressure reduced to the free space created by towed tonal emitters during signal reception from a vertical-horizontal scalar array moored a shallow water. When the emitter is towed, mutual positioning of the signal source and elements of the receiving array was done, and the array geometry was constructed. To calculate the transfer functions of the waveguide, a geoacoustic model of the shallow seafloor is used, obtained from preliminary acoustic calibration of the waveguide in the area of the experiment. We analyze the influence of the reliability of a priori information about the experimental conditions for the error in estimating the sound pressure values recalculated to free space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. R. J. Urick, Principles of Underwater Sound (McGraw-Hill, New York, 1975).

    Google Scholar 

  2. O. R. Cote, Jr., The 3rd Battle Innovation in the U.S. Navy’s Silent Cold War Struggle with Soviet Submarines (CreateSpace Independent Publishing Platform, 2003).

    Google Scholar 

  3. Yu. A. Koryakin, S. A. Smirnov, and G. V. Yakovlev, Ship Hydro-Acoustical Engineering. State and Topical Problems. Hydro-Acoustics at the Turn of 20th and 21st Centuries (Nauka, St. Petersburg, 2004) [in Russian].

    Google Scholar 

  4. ANSI/ASA Standard No. S12.64-2009: Quantities and Procedures for Description and Measurement of Underwater Sound from Ships—Part 1: General Requirements (2009).

  5. M. F. McKenna, D. Ross, S. M. Wiggins, and J. A. Hildebrand, J. Acoust. Soc. Am. 131 (1), 92 (2012). https://doi.org/10.1121/1.3664100

    Article  ADS  Google Scholar 

  6. V. A. Kal’yu, V. I. Tarovik, and V. Yu. Chizhov, in Proc. Sci. Conf. Session of Russian Academy of Sciences Scientific Counsel on Acoustics and 24th Session of Russian Acoustical Society (GEOS, Moscow, 2011), Vol. 2, p. 218 [in Russian].

  7. A. N. Rutenko and V. G. Ushchipovskii, Acoust. Phys. 61 (5), 556 (2015).

    Article  ADS  Google Scholar 

  8. V. I. Teverovskii and S. G. Tsygankov, Al’m. Sovr. Metrol., No. 1, 102 (2014).

  9. H. C. Song and Gihoon Byun, J. Acoust. Soc. Am. 147 (4), 2150 (2020).

    Article  ADS  Google Scholar 

  10. A. S. Barmak, P. I. Korotin, B. M. Salin, and M. B. Salin, Acoust. Phys. 61 (1), 117 (2015).

    Article  ADS  Google Scholar 

  11. G. N. Kuznetsov, in Metrology for Hydro-Acoustical Measurements (Federal State Unitary Enterprise “Russian Metrological Institute of Technical Physics and Radio Engineering”, Mendeleevo, 2013), Vol. 1, p. 57 [in Russian].

  12. V. Yu. Korchak, G. N. Kuznetsov, and V. N. Malyshev, Fundam. Nauka—Voen.-Morskomu Flotu 3, 41 (2018).

    Google Scholar 

  13. A. I. Belov, B. N. Bogolyubov, and G. N. Kuznetsov, in Proc. 6th Int. Sci.-Techn. Conf. Modern Methods and Means for Oceanological Researches (Shirshov Institute of Oceanology RAS, Moscow, 2000), p. 139 [in Russian].

  14. A. I. Belov and G. N. Kuznetsov, Acoust. Phys. 59 (6), 674 (2013).

    Article  ADS  Google Scholar 

  15. A. I. Belov and G. N. Kuznetsov, Fundam. Prikl. Gidrofiz., No. 8(1), 68 (2015).

  16. A. I. Belov and G. N. Kuznetsov, Acoust. Phys. 62 (2), 194 (2016).

    Article  ADS  Google Scholar 

  17. G. N. Kuznetsov, in Proc. 14th All-Russian Conf. Applied Technologies for Hydroacoustics and Hydrophysics (LEMA, St. Petersburg, 2018), p. 350 [in Russian].

  18. G. N. Kuznetsov, V. I. Alekseev, and G. M. Glebova, Phys. Vib. 9 (4), 235 (2001).

    Google Scholar 

  19. D. J. Hudson, Statistics: Lectures on Elementary Statistics and Probability (Geneva, 1964).

  20. H. L. Van Trees, Detection, Estimation, and Modulation Theory (Wiley, New York-London, 1971).

    MATH  Google Scholar 

  21. G. M. Glebova and G. N. Kuznetsov, in The Formation of Acoustical Fields in Oceanic Waveguides. Reconstruction of Inhomogeneitics in Shallow Water (Institute of Applied Physics RAS, Nizhny Novgorod, 1998), Vol. 1, p. 109 [in Russian].

    Google Scholar 

  22. G. N. Kuznetsov and A. N. Stepanov, Acoust. Phys. 59 (3), 333 (2013).

    Article  ADS  Google Scholar 

  23. G. N. Kuznetsov and A. N. Stepanov, Acoust. Phys. 65 (2), 190 (2019). https://doi.org/10.1134/S1063771019020076

    Article  ADS  Google Scholar 

Download references

Funding

The study was supported by the program “Shallow-Water Acoustics, Nonlinear Acoustic Diagnostics, Nonlinear Wave Dynamics” (state registration number AAAA-A18-118021390174-1), the Russian Foundation for Basic Research (project no. 19-08-00941), and the Ministry of Science and Higher Education of the Russian Federation under a state task (topic no. 0852-2020-0015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. N. Kuznetsov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glebova, G.M., Kuznetsov, G.N. Methods for Estimating the Reduced Noise of a Moving Monopole Source in Shallow Water. Acoust. Phys. 67, 273–282 (2021). https://doi.org/10.1134/S1063771021030039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771021030039

Keywords:

Navigation