Skip to main content
Log in

Excitation of Surface Acoustic Waves and Lamb Waves at Superhigh Frequencies in a Diamond-Based Piezoelectric Layered Structure

  • PHYSICAL ACOUSTICS
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

The authors have carried out an experimental and theoretical study of the propagation of surface acoustic waves (SAW)—Rayleigh, Sezawa and SH-modes, as well as Lamb waves in Me-IDT/AlN/(100) diamond (Me = Pt, Al) piezoelectric layered structures with a SAW resonator configuration. The types of modes are identified and the dispersion curves of the phase velocities and electromechanical coupling coefficients for SAW and Lamb waves are obtained. The excitation of Lamb waves up to a frequency of 7.3 GHz was observed experimentally. The resonance curves for Lamb waves have a higher quality factor Q compared to surface acoustic waves propagating on the same substrates. At a frequency of about 7 GHz, the loaded Q-factor reaches 3400, while the quality parameter Q × f = 2.4 × 1013 Hz. An unusual effect of a significant increase in the Q-factor of Lamb waves with the frequency increasing from 760 at 1.5 GHz to 3400 at 7 GHz is noted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. K. Hashimoto, T. Fujii, S. Sato, T. Omori, Ch. Ahn, A. Teshigahara, K. Kano, H. Umezawa, and S. Shikata, in Proc. 2012 IEEE Int. Ultrasonics Symp. (Dresden, Oct. 7–10, 2012), p. 1926.

  2. H. Lamb, Proc. R. Soc. A 93, 114 (1917).

    ADS  Google Scholar 

  3. I. A. Viktorov, Physical Foundations of Relay and Lamb Ultrasonic Waves Application in Engineering (Nauka, Moscow, 1966) [in Russian].

    Google Scholar 

  4. T. Ghosh, T. Kundu, and P. Kapur, Ultrasonics 36, 791 (1998).

    Article  Google Scholar 

  5. A. M. Brekhovskikh, Waves in Layered Mediums (USSR Acad. Sci., Moscow, 1957) [in Russian].

    MATH  Google Scholar 

  6. Y. Jin and S. G. Joshi, IEEE Trans. Ultrason., Ferroelectr. Freq. Control 41, 279 (1994).

    Article  Google Scholar 

  7. Y. Jin and S. G. Joshi, IEEE Trans. Ultrason., Ferroelectr. Freq. Control 43, 491 (1996).

    Article  Google Scholar 

  8. I. A. Borodina, S. G. Joshi, B. D. Zaitsev, and I. E. Kuznetsova, Acoust. Phys. 46 (1), 33 (2000).

    Article  ADS  Google Scholar 

  9. S. G. Joshi, B. D. Zaitsev, and I. E. Kuznetsova, Acoust. Phys. 47 (3), 282 (2001).

    Article  ADS  Google Scholar 

  10. I. E. Kuznetsova, B. D. Zaitsev, S. G. Joshi, and I. A. Borodina, IEEE Trans. Ultrason., Ferroelectr. Freq. Control 48, 322 (2001).

    Article  Google Scholar 

  11. V. Klymko, A. Nadtochiy, and I. Ostrovskii, IEEE Trans. Ultrason., Ferroelectr. Freq. Control 55 (12), 2726 (2008).

    Article  Google Scholar 

  12. I. E. Kuznetsova, B. D. Zaitsev, I. A. Borodina, A. A. Teplyh, V. V. Shurygin, and S. G. Joshi, Ultrasonics 42, 179 (2004).

    Article  Google Scholar 

  13. B. D. Zaitsev, I. E. Kuznetsova, I. A. Borodina, and S. G. Joshi, Ultrasonics 39, 51 (2001).

    Article  Google Scholar 

  14. V. I. Anisimkin, Acoust. Phys. 62 (2), 165 (2016).

    Article  ADS  Google Scholar 

  15. V. I. Anisimkin, E. Verona, A. S. Kuznetsova, and V. A. Osipenko, Acoust. Phys. 65 (2), 171 (2019).

    Article  ADS  Google Scholar 

  16. V. I. Anisimkin and N. V. Voronova, Acoust. Phys. 66 (1), 1 (2020).

    Article  ADS  Google Scholar 

  17. S. I. Burkov, O. P. Zolotova, B. P. Sorokin, P. P. Turchin, and V. S. Talismanov, J. Acoust. Soc. Am. 143, 16 (2018).

    Article  ADS  Google Scholar 

  18. V. Yantchev and I. Katardjiev, J. Micromech. Microeng. 23, 043001 (2013).

    Article  ADS  Google Scholar 

  19. A. Choujaa, N. Tirole, C. Bonjour, G. Martin, D. Hauden, P. Blind, and C. Pommier, Sens. Actuators, A 46, 179 (1995).

    Article  Google Scholar 

  20. E. Anderås, I. Katardjiev, and V. Yantchev, J. Micromech. Microeng. 21, 85010 (2011).

    Article  Google Scholar 

  21. T. Kimura, M. Omura, Y. Kishimoto, and K. Hashimoto, IEEE Trans. Microwave Theory Tech. 67, 915 (2019).

    Article  ADS  Google Scholar 

  22. B. P. Sorokin, G. M. Kvashnin, A. S. Novoselov, V. S. Bormashov, A. V. Golovanov, S. I. Burkov, and V. D. Blank, Ultrasonics 78, 162 (2017).

    Article  Google Scholar 

  23. B. P. Sorokin, A. S. Novoselov, G. M. Kvashnin, N. V. Luparev, N. O. Asafiev, A. B. Shipilov, and V. V. Aksenenkov, Acoust. Phys. 65 (3), 263 (2019).

    Article  ADS  Google Scholar 

  24. Yu. Shvyd’ko, S. Stoupin, V. Blank, and S. Terentyev, Nat. Photonics 5, 539 (2011).

    Article  ADS  Google Scholar 

  25. B. P. Sorokin, G. M. Kvashnin, A. S. Novoselov, S. I. Burkov, A. B. Shipilov, N. V. Luparev, V. V. Aksenenkov, and V. D. Blank, Piezoelectricity-Organic and Inorganic Materials and Applications, Ed. by S. G. Vassiliadis and D. Matsouka (IntechOpen, 2018), p. 15.

    Google Scholar 

  26. K. S. Aleksandrov, B. P. Sorokin, and S. I. Burkov, Efficient Piezoelectric Crystals for Acoustical Electronics, Piezoengineering and Sensors (Siberian Branch RAS, Novosibirsk, 2007), Vol. 1 [in Russian].

    Google Scholar 

  27. A. V. Sotnikov, H. Schmidt, M. Weihnacht, T. Yu. Chemekova, and Yu. N. Makarov, IEEE Trans. Ultrason., Ferroelectr. Freq. Control 57, 808 (2010).

    Article  Google Scholar 

  28. B. P. Sorokin, G. M. Kvashnin, A. V. Telichko, G. I. Gordeev, S. I. Burkov, and V. D. Blank, Acoust. Phys. 61 (4), 422 (2015).

    Article  ADS  Google Scholar 

  29. J. A. Rayne and C. K. Jones, Phys. Lett. 18, 91 (1965).

    Article  ADS  Google Scholar 

  30. B. P. Sorokin, G. M. Kvashnin, A. V. Telichko, S. I. Burkov, and V. D. Blank, in Piezoelectric Materials, Ed. by T. Ogawa. Rijeka (Intech, 2016), p. 161.

    Google Scholar 

Download references

Funding

The study was financially supported by a grant from the Russian Science Foundation (project no. 16-12-10293-P). Special thanks to S.A. Terentyev and M.S. Kuznetsov (Technological Institute for Superhard and New Carbon Materials) for the preparation of diamond single crystals and substrates.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. M. Kvashnin or B. P. Sorokin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kvashnin, G.M., Sorokin, B.P. & Burkov, S.I. Excitation of Surface Acoustic Waves and Lamb Waves at Superhigh Frequencies in a Diamond-Based Piezoelectric Layered Structure. Acoust. Phys. 67, 38–46 (2021). https://doi.org/10.1134/S1063771021010024

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771021010024

Keywords:

Navigation