Mode Matching Analysis of Sound Waves in an Infinite Pipe with Perforated Screen

Abstract

The propagation of sound waves in an infinite circular cylindrical pipe with an inserted perforated screen is investigated rigorously through the mode matching technique. The pipe walls are assumed to be rigid for \( - \infty < z < - l\) and coated for \( - l < z < 0,{\text{ }}0 < z < \infty \) with different linings. An analytical solution for the field terms are determined in form of eigenmodes which are matched across the boundary of each junction discontinuity. Numerical results are performed to show the effect of the different parameters such as waveguide radius, length of the partial lined part and acoustic absorbing lining properties on the propagation phenomenon. The use of such components is effective in reducing noise effects from various sources. The results of the mode matching technique are also compared graphically with the results of the Wiener–Hopf technique which is more difficult to implement and perfect agreement are observed.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

REFERENCES

  1. 1

    A. D. Rawlins, Proc. R. Soc. London, Ser. A 361, 65 (1978).

    ADS  MathSciNet  Article  Google Scholar 

  2. 2

    L. Huang, J. Acoust. Soc. Am. 112, 2014 (2002).

    ADS  Article  Google Scholar 

  3. 3

    A. Demir and A. Buyukaksoy, Int. J. Eng. Sci. 41 (20), 2411 (2003).

    Article  Google Scholar 

  4. 4

    A. Demir and A. Buyukaksoy, Int. J. Eng. Sci. 43 (5), 398 (2005).

    Article  Google Scholar 

  5. 5

    I. Lee, A. Selamet, and N. T. Huff, J. Acoust. Soc. Am. 120, 3706 (2006).

    ADS  Article  Google Scholar 

  6. 6

    B. Tiryakioglu, Acta Acust. Acust. 105 (4), 591 (2019).

    Article  Google Scholar 

  7. 7

    N. Peake and I. D. Abrahams, Wave Motion 92, 102407 (2020).

    MathSciNet  Article  Google Scholar 

  8. 8

    J. W. Sullivan and M. J. Crocker, J. Acoust. Soc. Am. 64, 207 (1978).

    ADS  Article  Google Scholar 

  9. 9

    B. Nilsson and O. Brander, J. Inst. Math. Appl. 26, 269 (1980).

    MathSciNet  Article  Google Scholar 

  10. 10

    B. Nilsson and O. Brander, J. Inst. Math. Appl. 26, 381 (1980).

    MathSciNet  Article  Google Scholar 

  11. 11

    I. J. Hughes and A. P. Dowling, J. Fluid Mech. 218, 299 (1990).

    ADS  Article  Google Scholar 

  12. 12

    C. Lawn, Appl. Acoust. 89, 211 (2015).

    Article  Google Scholar 

  13. 13

    C. Yang, L. Cheng, and Z. Hu, Appl. Acoust. 95, 50 (2015).

    Article  Google Scholar 

  14. 14

    B. Tiryakioglu, J. Eng. Math. 122 (1), 17 (2020).

    MathSciNet  Article  Google Scholar 

  15. 15

    R. Huang and D. Zhang, Progr. Electromagn. Res. 67, 205 (2007).

    Article  Google Scholar 

  16. 16

    G. Çınar, H. Öztürk, and Ö. Y. Çınar, Math. Methods Appl. Sci. 34, 220 (2011).

    ADS  MathSciNet  Article  Google Scholar 

  17. 17

    S. Shafique, M. Afzal, and R. Nawaz, Can. J. Phys. 95 (6), 581 (2017).

    ADS  Article  Google Scholar 

  18. 18

    A. Snakowska, J. Jurkiewicz, and L. Gorazd, J. Sound Vib. 396, 325 (2017).

  19. 19

    D. B. Kuryliak and O. M. Sharabura, Math. Methods Appl. Sci. 43, 1565 (2020).

    ADS  MathSciNet  Article  Google Scholar 

  20. 20

    M. Hassan, H. M. Meylan, A. Bashir, and M. Sumbul, Math. Methods Appl. Sci. 39 (11), 3043 (2016).

    MathSciNet  Article  Google Scholar 

  21. 21

    A. Khalid, S. Younas, I. Khan, R. Manzoor, N. Rab, and E. M. Sherif, J. Interdiscip. Math. 22 (7), 1095 (2020).

    Article  Google Scholar 

  22. 22

    M. Hassan and A. Bashir, Can. J. Phys. 96 (2), 165 (2018).

    ADS  Article  Google Scholar 

  23. 23

    A. Isikyer and A. Demir, Bull. Tech. Univ. Istanbul 54, 46 (2007).

    Google Scholar 

  24. 24

    A. Demir and A. Buyukaksoy, Acta Acust. Acust. 89, 578 (2003).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to B. Tiryakioglu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tiryakioglu, B. Mode Matching Analysis of Sound Waves in an Infinite Pipe with Perforated Screen. Acoust. Phys. 66, 580–586 (2020). https://doi.org/10.1134/S1063771020060135

Download citation

Keywords:

  • mode matching
  • perforated screen
  • lining
  • pipe